• Title/Summary/Keyword: Unit orientation

Search Result 185, Processing Time 0.025 seconds

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

Surgical Outcome of Cervical Arthroplasty Using $Bryan^{(R)}$

  • Kim, Hong-Ki;Kim, Myung-Hyun;Cho, Do-Sang;Kim, Sung-Hak
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.6
    • /
    • pp.532-537
    • /
    • 2009
  • Objective : Recently, motion preservation has come to the forefront of emerging technologies in spine surgery. This is the important background information of the emergence of cervical arthroplasty as an alternative to arthrodesis that offers the promise of restoring normal spinal movement and reduces a kinematic strain on adjacent segments. The study was designed to evaluate early surgical outcome and radiological effects of $Bryan^{(R)}$ cervical disc prosthesis. Methods : The authors retrospectively reviewed radiographic and clinical outcomes in 52 patients who received the $Bryan^{(R)}$ Cervical Disc prosthesis, for whom follow-up data were available. Static and dynamic radiographs were measured by computer to determine the angles formed by the endplates of the natural disc preoperatively, those formed by the shells of the implanted prosthesis, the angle of functional spine unit (FSU), and the C2-7 Cobb angle. The range of motion (ROM) was also determined radiographically, whereas clinical outcomes were assessed using Odom's criteria, visual analogue pain scale (VAS) and neck disability index (NDI). Results : A total of 71 $Bryan^{(R)}$ disc were placed in 52 patients. A single-level procedure was performed in 36 patients, a two-level procedure in 13 patients, and a three-level procedure in 3. Radiographic and clinical assessments were made preoperatively. Mean follow-up duration was 29.2 months, ranging from 6 to 36 months. All of the patients were satisfied with the surgical results by Odom's criteria, and showed significant improvement by VAS and NDI score (p < 0.05). The postoperative ROM of the implanted level was preserved without significant difference from preoperative ROM of the operated level (p < 0.05). 97% of patients with a preoperative lordotic sagittal orientation of the FSU were able to maintain lordosis. The overall sagittal alignment of the cervical spine was preserved in 88.5% of cases at the final follow up. Interestingly, preoperatively kyphotic FSU resulted in lordotic FSU in 70% of patients during the late follow up, and preoperatively kyphotic overall cervical alignment resulted in lordosis in 66.6% of the patients postoperatively. Conclusion : Arthroplasty using the $Bryan^{(R)}$ disc seemed to be safe and provided encouraging clinical and radiologic outcome in our study. Although the early results are promising, this is a relatively new approach, therefore long-term follow up studies are required to prove its efficacy and its ability to prevent adjacent segment disease.

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

An Study on World Geography Lessons Using Local Multi-cultural Activities and the CCAP (Cross-Cultural Awareness programme) (지역 다문화 활동과 CCAP를 활용한 세계지리 수업에 관한 연구)

  • Kim, Si-Gu;Cho, Chul-Ki;Jo, Hyun-Mi
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.231-244
    • /
    • 2011
  • This study is to examine how activities using local multi -cultural resources and world geography lessons using the CCAP(Cross-Cultural Awareness Programme) affect students' multi-cultural understanding. Activities using local multi-cultural resources were carried by visiting in an alien worker community, volunteering in multicultural center, attending on UNESCO ASP(Associated School Program), and making radio broadcasting program associated with 'SCN FM' which is a local broadcasting station on the weekend. And world geography lessons using the CCAP were conducted with 5 classes including orientation by inviting foreign instructors from that place after reconstructing the Southeast and South Asia unit of the countries such as Pakistan, the Philippines, Myanmar and Cambodia. According to twice questionnaire survey conducted before and after activities using local multi-cultural resources and world geography lessons using the CCAP, it appeared that students had familiarity more than before through direct meeting with foreigners inside and outside classroom, and understood and respected other cultures by acquiring contextual regional knowledge. In the end, multi-cultural activities and world geography lessons using the CCAP contributed to students' global citizenship, which overcame prejudice toward third world cultures. Like that, if world geography classes provide continually students with opportunities to experience directly diverse cultures inside and outside classroom, world geography overcome negative image that it transmit decontextual regional knowledge and is regarded as the subject that is very fit for nurturing global citizenship based on contextual knowledge, consideration and tolerance needed in global and multi-cultural society.

  • PDF

Characteristics and Deposition of CuInS2 film for thin solar cells via sol-gel method0 (Sol-gel법에 의한 박막태양전지용 CuInS2 박막의 증착과 특성)

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.158-163
    • /
    • 2011
  • $CuInS_2$ thin films were prepared using a sol-gel spin-coating method. That makes large scale substrate coating, simple equipment, easy composition control available. The structural and optical properties of $CuInS_2$ thin films that include less toxic materials (S) instead of Se, tetragonal chalcopyrite structure. Copper acetate monohydrate ($Cu(CH_3COO)_2{\cdot}H2O$) and indium acetate ($In(CH_3COO)_3$) were dissolved into 2-propanol and l-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 3000 rpm, and dried at $300^{\circ}C$ for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box and chalcopyrite phase of $CuInS_2$ was observed. To determine the optical properties measured optical transmittance of visible light region (380~770 nm) were less than 30 % in the overall. The XRD pattern shows that main peak was observed at Cu/In ratio 1.0 and its orientation was (112). As annealing temperature increases, the intensity of (112) plane increases. The unit cell constant are a = 5.5032 and c = 11.1064 $\AA$, and this was well matched with JCPDS card. The optical transmittance of visible region was below than 30 %.

The Influences of Lecture Design Using CoRe upon Professor's Teaching Professionalism in College of Science-Engineering (CoRe를 활용한 수업 설계가 이공계열 교수의 수업 전문성에 미치는 영향)

  • Song, Nayoon;Hong, Juyeon;Noh, Taehee;Han, JaeYoung
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.2
    • /
    • pp.84-98
    • /
    • 2020
  • In this study, we analyzed the influences of lecture design using CoRe upon the professor's teaching professionalism in the aspects of pedagogical content knowledge (PCK). The participants are three professors from the college of science-engineering located in Chungcheong-do. After collecting their syllabi, we observed their lecture and conducted the orientation. Afterward, we collected the CoRes which they prepared before the lecture. Then we observed their lecture and conducted semi-structured interviews. This process was carried out twice. We analyzed their syllabi, CoRes, videotaped lectures, field notes, the teaching materials, and interview transcripts. The results revealed that professors not only clarified the learning objectives and the characteristics of students but also reflected them in the lecture. In addition, they established the teaching strategies according to the characteristics of contents in the unit. As they recognized the necessity of understanding students' achievement, they selected the assessment method and applied it in the lecture. In some cases, however, they lacked presenting learning objectives specifically and explained students' misconceptions without inducing new concepts. They also presented a shortage of considering students' prior knowledge. They lacked providing students with an opportunity to participate in lectures, and their assessment method was not effective. Based on the results, we discussed implications to improve teaching professionalism using CoRe.

The Effects of Mentee's Characteristics and Value Orientation on Informal Mentoring Function of ROK Military (멘티의 성격특성과 가치성향이 군(軍) 조직의 비공식적 멘토링 기능에 미치는 영향)

  • Lee, Ho Bok;Lee, Kyu-Man
    • Management & Information Systems Review
    • /
    • v.32 no.4
    • /
    • pp.81-101
    • /
    • 2013
  • The purpose of this study was to examine the effects of mental similarity and internal locus of control, which are the characteristics of an organizational member, and individualism and power distance, which are an individual's sense of value, on mentoring function in an informal mentoring relationship of ROK army. For corroborative analysis, the sample was collected from 547 questionnaires, which contain validate data out of 1,000 questionnaires distributed to junior officers working at ROK army's division level unit. The data proved that, First, mental similarity and internal locus of control positively effected upon mentoring function. Second, individualism positively effected upon mentoring function while power distance had a negative effect on it. Thus in an informal mentoring relationship of ROK army, a mentee perceived as he or she gains more support from mentoring function when a mentee recognizes higher mental similarity, individualism, and is in an internal locus of control. On the other hand, a mentee who perceived higher power distance felt as he or she gets less support from mentoring function. Through this investigation, the significance of influential components of mentoring function in a mentoring relationship of ROK army was demonstrated, and these research results could be highly supportive for a future research based on mentoring relationship.

  • PDF

Dielectric Properties of Semi-IPN Poly(phenylene oxide) Blend/$BaTiO_3$ Composites with Type of Cross-linker (가교체 종류에 따른 Semi-IPN Poly(phenylene oxide) 블렌드와 $BaTiO_3$ 복합재료의 유전특성)

  • Jang, Yong-Kyun;Lee, Ho-Il;Seong, Won-Mo;Park, Sang-Hoon;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • The dielectric properties of semi-IPN poly(phenylene oxide)(PPO) blend/$BaTiO_3$(BT) composites are investigated. The composites are fabricated via melt-mixing of crosslinker and peroxide in precursor PPO composite obtained by precipitating the suspension consisted of PPO, BT and toluene into methylethyl ketone, poor solvent of PPO. The permittivity of the precursor PPO composites shows higher value than that of integral-blended PPO composites by extruder and coincides with the theoretical value calculated by logarithmic rule of mixture. The blend of PPO and cross-linked triallyl isocyanurate is most effective for lowering the permittivity and loss tangent owing to the suppression of the orientation polarization of matrix. In contrast, 4,4'-(1,3-phenylene diisopropylidene) bisaniline, which has amine unit in its structure, increases the permittivity as well as loss tangent of the composite, but it has the ability to densify the matrix resin and the interfacial adhesion between the matrix and filler to improves flexural strength and modulus.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.