• Title/Summary/Keyword: Unit Testing

Search Result 620, Processing Time 0.026 seconds

Development of Enhanced DAP(Dose Area Product) (성능이 향상된 면적선량계(DAP) 개발)

  • Lee, Young-Ji;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.739-742
    • /
    • 2019
  • In this paper, we propose enhanced DAP(Dose Area Product). The development of enhanced DAP proposed in this paper has optimized the area dose meter that was developed previously. The development of enhanced DAP performed Optimized design of charge integrator and ADC circuit, optimization of line transceiver for RS-485 communication, optimization of display circuit, and optimization of PC-based control program for interlocking and aging. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, Radiation dose dependence and Radiation quality dependence were measured to be 4.2%, which is below ${\pm}15%$ of international standard. Energy range/Tube voltage was confirmed in the range of 30~150kV. The sensitivity difference between sensor field and sensor field area dose sensitivity was measured to be 4.3%, and it was confirmed that it operates normally under ${\pm}15%$ of international standard. In order to measure the reproducibility of the area dosimeter, it was confirmed that it was 0% and it was operated normally at less than 2% of IEC60580 recommendation. Digital resolution was confirmed to be a minimum unit of $0.01{\mu}Gy{\cdot}m^2$ within the error range for the reference dose per hour.

The Effect of Science Instruction Using Thinking Maps on Self-directed Learning Ability and Science Process Skills (Thinking Maps를 활용한 과학수업이 자기주도적 학습능력 및 과학탐구능력에 미치는 효과)

  • Lee, Yong-seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.11 no.3
    • /
    • pp.172-181
    • /
    • 2018
  • The purpose of this study is to investigate the impact on self-directed learning ability and science process skills by utilizing 'Thinking Maps' in a science class. This particular study was proceeded to 5th grader at B elementary school, there was a mutual agreement with a teacher about assigning a research group and a comparison group and it was agreed by students and explaining the reason and purpose of the study. The researchers visited the school and selected 24 students in the research class and 24 students in the comparative class. For a research group, an experimental group, homeroom teacher, proceeded a science class with the application of 'Thinking Maps'. The experimental period was set up as a 40 minutes class unit for 12 weeks. After an experimental group, self-directed learning ability and science process skills were examined, data collection and data analysis were proceeded by order. The following experimental results are as below. First, the application of 'Thinking Maps' method in the class was effective in self-directed learning ability. Second, the application of 'Thinking Maps' method in the class was effective in scientific process skills. Third, the application of 'Thinking Maps' method in the class had a positive cognition from the learners in the experimental group. Based on the discussions and implications of the results of this study, some suggestions in the follow - up study are as follows. First, applying Thinking Maps technique to various science classes to see the effects can also be suggested as one of the new teaching methods. Second, testing the effects of applying different grades of elementary school students using the Thinking Maps technique could also be highlighted as another way of teaching science classes.

Instructional Development of Making Upcycle Clothing Accessories for the Middle School Home Economics Classes Applying the Design Thinking Technique (디자인씽킹 기법을 활용한 중학교 가정교과 의류 업사이클링 소품제작 수업개발)

  • Yu, Myoung Suk;Lee, Yhe Young
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.3
    • /
    • pp.173-187
    • /
    • 2021
  • The purpose of this research was to develop instructions for making upcycled clothing accessories related to the 'clothing management and recycling' unit of middle school home economics applying the design thinking technique. Teaching and learning process plans were developed according to the ADDIE model which includes the following process: analysis, design, development, implementation, and evaluation. The design thinking process includes understanding the related knowledge, sympathizing, problem identification(sharing perspectives) and idea development, making prototypes, testing, and making the actual product. Thirteen home economics teachers served as critics. Student feedbacks were collected to evaluate whether the course objectives were attained after the implementation. As a result, teaching and learning process plans, course materials, and evaluation rubrics for ten class sessions were developed. Student feedbacks confirmed the attainment of following five course objectives: improvement of ethical responsibilities through the exploration of various clothing recycling techniques, practice of creative and eco-friendly clothing culture, acquisition of the skills to use sewing tools safely, improvement of abilities to think, sympathize, and communicate, and exploration of aesthetic activities and fashion careers.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

An Error Correction Model for Long Term Forecast of System Marginal Price (전력 계통한계가격 장기예측을 위한 오차수정모형)

  • Shin, Sukha;Yoo, Hanwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.453-459
    • /
    • 2021
  • The system marginal price of electricity is the amount paid to all the generating units, which is an important decision-making factor for the construction and maintenance of an electrical power unit. In this paper, we suggest a long-term forecasting model for calculating the system marginal price based on prices of natural gas and oil. As most variables used in the analysis are nonstationary time series, the long run relationship among the variables should be examined by cointegration tests. The forecasting model is similar to an error correction model which consists of a long run cointegrating equation and another equation for short run dynamics. To mitigate the robustness issue arising from the relatively small data sample, this study employs various testing and estimating methods. Compared to previous studies, this paper considers multiple fuel prices in the forecasting model of system marginal price, and provides greater emphasis on the robustness of analysis. As none of the cointegrating relations associated with system marginal price, natural gas price and oil price are excluded, three error correction models are estimated. Considering the root mean squared error and mean absolute error, the model based on the cointegrating relation between system marginal price and natural gas price performs best in the out-of-sample forecast.

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.

Comparative Evaluation on the Cost Analysis of Software Development Model Based on Weibull Lifetime Distribution (와이블 수명분포에 근거한 소프트웨어 개발모형의 비용 분석에 관한 비교 평가)

  • Bae, Hyo-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2022
  • In this study, the finite-failure NHPP software reliability model was applied to the software development model based on the Weibull lifetime distribution (Goel-Okumoto, Rayleigh, Type-2 Gumbe), which is widely used in the software reliability field, and then the cost attributes were compared and evaluated. For this study, failure time data detected during normal operation of the software system were collected and used, the most-likelihood estimation (MLE) method was applied to the parameter estimation of the proposed model, and the calculation of the nonlinear equation was solved using the binary method. As a result, first, in the software development model, when the cost of testing per unit time and the cost of removing a single defect increased, the cost increased but the release time did not change, and when the cost of repairing failures detected during normal system operation increased, the cost increased and the release time was also delayed. Second, as a result of comprehensive comparative analysis of the proposed models, it was found that the Type-2 Gumble model was the most efficient model because the development cost was lower and the release time point was relatively faster than the Rayleigh model and the Goel-Okumoto basic model. Third, through this study, the development cost properties of the Weibull distribution model were newly evaluated, and the analyzed data is expected to be utilized as design data that enables software developers to explore the attributes of development cost and release time.

Studies on Processing Techniques in Barley I. Effect of Polishing Conditions of Hulled Barley on Grain Shape and Polishing Properties (보리의 가공기술 개선연구 I. 겉보리의 도정조건에 따른 곡립특성 및 도정수율)

  • Kim, Y.S.;Lee, B.Y.;Bae, S.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.281-286
    • /
    • 1988
  • These studies were conducted to find out the polishing methods that improve yield and quality of the polished barley. Four varieties of hulled barley, Dongbori 1. Bunong, Kangbori and Suwon 182 which were produced in Suwon, Korea in 1979, were subjected to this experiment. The polishing machine, manufactured by Satake Co, was used as test mill. Increasing the roller speed of polishing machine causes more polished barley in a unit period. The speed influenced more in length than thickness or width of grain. Therefore the shape of grain became bold type as the speed increased. The optimum roller speed was 1,300rpm in ideal shape of polished barley. The lowest hardness was observed in the husk layer and the hardness was found in the decreasing order of the aleurone, testa, peri carp and the endosperm layer. The thickness of bran layer, weight of 1,000 kernel and hardness of polished barley were greatly different according to barley varieties. Also the length, thickness, width and the ratio of length to width of barley grain were significantly different in barley varieties. The ratio of length to width of the polished barley was 1.59 in Suwon 182, 1.53 in Bunong, 1.51 in Kangbori and 1.26 in Dongbori 1.

  • PDF

DoS/DDoS attacks Detection Algorithm and System using Packet Counting (패킷 카운팅을 이용한 DoS/DDoS 공격 탐지 알고리즘 및 이를 이용한 시스템)

  • Kim, Tae-Won;Jung, Jae-Il;Lee, Joo-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.151-159
    • /
    • 2010
  • Currently, by using the Internet, We can do varius things such as Web surfing, email, on-line shopping, stock trading on your home or office. However, as being out of the concept of security from the beginning, it is the big social issues that malicious user intrudes into the system through the network, on purpose to steal personal information or to paralyze system. In addition, network intrusion by ordinary people using network attack tools is bringing about big worries, so that the need for effective and powerful intrusion detection system becomes very important issue in our Internet environment. However, it is very difficult to prevent this attack perfectly. In this paper we proposed the algorithm for the detection of DoS attacks, and developed attack detection tools. Through learning in a normal state on Step 1, we calculate thresholds, the number of packets that are coming to each port, the median and the average utilization of each port on Step 2. And we propose values to determine how to attack detection on Step 3. By programing proposed attack detection algorithm and by testing the results, we can see that the difference between the median of packet mounts for unit interval and the average utilization of each port number is effective in detecting attacks. Also, without the need to look into the network data, we can easily be implemented by only using the number of packets to detect attacks.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.