• 제목/요약/키워드: Unit Heating System

검색결과 256건 처리시간 0.033초

직달일사를 이용한 잠열축열식 바닥난방 시스템이 냉방부하에 미치는 영향에 대한 검토 (Effects of Phase Change Material Floor Heating Systems using Direct Solar Gain on Cooling Load)

  • 김수경
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.9-16
    • /
    • 2013
  • In this research, the effect of a heating system, which is powered by direct solar energy accumulated in phase change material (PCM) as heat storage material installed on the floor surface, on the cooling load was studied. Cooling load of a test building designed for this research was measured with fan coil unit and factors affecting it were also estimated. Experiments were performed with and without PCM installed on the building floor to understand the effect of the PCM on the cooling load. Additionally, to confirm the experiments results, the prediction calculation formula by average outside temperature and integrated solar radiation was composed using multivariate regression model. The results suggested that the heating system with PCM on the floor surface has the potential to shift electric power peak by radiating heat, stored during the daytime in it, at night, not increasing the total cooling load much.

재해임시주거 냉난방을 위하여 기존 에어컨을 열펌프로 전환하는 변환기 개발 (Development of a Conversion Unit converting the existing air conditioner to Heat Pump System for the Emergency Shelter)

  • 송헌
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.77-84
    • /
    • 2011
  • Korea and some other countries located in the northern hemisphere employ the air conditioner for the space cooling in the hot summer season and also some kinds of heaters for the space heating in the cold winter season. Especially in Korea, a great number of air conditioners of about 12,700,000 sets have been used these days. However, they are used for a short operation period of only 58 days a year, which results in the material and economic losses. To solve this problem and employ this system for the emergency shelter, a new conversion unit which could convert the existing air conditioner to a heat pump system for simultaneous heating and cooling was developed in this study, and the thermal performance was tested. The results indicated that the indoor air could be heated from $27^{\circ}C$ to $39^{\circ}C$ by the air conditioner converted to a heat pump system with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, and cooled from $20^{\circ}C$ to $15^{\circ}C$ by the converted system with the ambient temperature variation of $20^{\circ}C{\sim}35^{\circ}C$. And also the heating COP increased from 3.3 to 5.3 in case of the heat exchange of the super cooling(HESC) circuit and from 3.0 to 4.0 in case of the By-pass with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, respectively, whereas the cooling COP decreased from 3.1 to 2.1with the increase of the ambient temperature from $20^{\circ}C$ to $35^{\circ}C$.

Analysis on Heating Effects of the Vertical Type Geothermal Heat Pump System

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa
    • Journal of Biosystems Engineering
    • /
    • 제39권2호
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: This paper is aimed at analyzing the heating performance of the vertical closed loop type Geothermal Heat Pump System (GHPS) distributing the farm site and providing basic data of the GHPS. Method: Seedling greenhouse heating was made from October 2012 to May 2013. The seedling greenhouse was divided into 4 sectors (A, B, C and D zone, total $3,300m^2$) with different temperatures. It was heated from 5PM to 8AM, and during the night the greenhouse was covered by non-woven fabric thermal curtains along the upper 2m of the greenhouse for temperature maintenance. In order to analyze the heating performance of the GHPS, power consumption and operating time of the GHPS, inlet and outlet water temperature of the condenser, temperatures of each zone of the greenhouse, and ambient temperature were measured. Results: When operating only one heat pump unit, heat generated in the condenser decreased as the experiment progressed and power consumption increased correspondingly. However, the heating coefficient of performance decreased from 3.3 to 2.0 rapidly. Also, when operating two heat pump units, heat generated in the condenser decreased and power consumption increased. Heating coefficient of performance decreased from 4.5 to 3.7 rapidly. When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and minimum ambient temperature was $-20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. Conclusion: When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and the minimum ambient temperature was $20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. When operating only one heat pump unit, the heating COP was 2.0~3.3, and when operating 2 heat pump units, it was 3.7~4.5. If several heat pumps are installed in one GHPS, it is suggested that all heat pumps be operated except in special cases. Because the scale of the water pumps are set to the scale of when all heat pump units are operating, if even one unit is not operating, the power consumption will increase. That becomes the cause of COP decrease.

Variations in the hysteretic behavior of LRBs as a function of applied loading

  • Ozdemir, Gokhan;Bayhan, Beyhan;Gulkan, Polat
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.69-78
    • /
    • 2018
  • The study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.

지역난방 적용 태양열시스템의 장기 열성능 분석 (Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System)

  • 백남춘;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

수평형 지열 히트펌프 시스템의 냉난방 성능 분석 (Performance Analysis of Ground-Coupled Heat Pump System with Slinky-Type Horizontal Ground Heat Exchanger)

  • 손병후
    • 설비공학논문집
    • /
    • 제24권3호
    • /
    • pp.230-239
    • /
    • 2012
  • Ground-coupled heat pump (GCHP) systems utilize the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. The main objective of the present study is to investigate the cooling and heating performance of a small scale GCHP system with horizontal ground heat exchanger (HGHE). In order to evaluate the performance, a water-to-air ground-source heat pump unit connected to a test room with a net floor area of 18.4 m2 and a volume of 64.4 m3 in the Korea Institute of Construction Technology ($37^{\circ}39'N$, $126^{\circ}48'E$) was designed and constructed. This GCHP system mainly consisted of slinky-type HGHE with a total length of 400 m, indoor heat pump, and measuring devices. The peak cooling and heating loads of the test room were 5.07 kW and 4.12 kW, respectively. The experimental results were obtained from March 15, 2011 to August 31, 2011 and the performance coefficients of the system were determined from the measured data. The overall seasonal performance factor (SPF) for cooling was 3.31 while the system delivered heating at a daily average performance coefficients of 2.82.

하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석 (Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE))

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

공동주택 발코니창에 설치된 가동단열 시스템의 열성능 평가 (Thermal Performance Evaluation of Movable Insulation System in Apartments)

  • 윤종호;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.28-35
    • /
    • 2008
  • The aim of this study was to analysis the Heating/cooling performance of movable insulation system built in apartments. The process of this study is as follows: 1) Test-cells of movable insulation are designed through the investigation of previous paper and work. The type of the movable insulation used in test-cell is low emissivity(5%) insulation, measured for heating season and the thermal effects are analyzed. 2) The simulation program(Design Builder) was used in energy performance analysis. the reference model of simulation was made up to analysis energy performance on movable insulation system. 3) Selected reference model(Floors:15, Area of Unit:115.5$m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as slate angle of movable insulation(5$^{\circ}$, 30$^{\circ}$, 50$^{\circ}$) and position of movable insulation. Consequently, When movable insulation system is equipped with balcony window of Apartment, Annual heating energy of reference model was cut down at the average of 5.4kWh/$m^2$ or 4.6% of heating/cooling energy.

산림바이오매스 이용 마을단위 지역난방에 관한 주민 인식 분석 - 화천 산림탄소순환마을 사례를 중심으로 - (An Analysis of Residents' Perception on District Heating in the Village Unit Using Forest Biomass - Focused on the Case of Forest Carbon Circulation Village in Hwacheon -)

  • 유선화;김성학
    • 한국환경과학회지
    • /
    • 제29권4호
    • /
    • pp.339-349
    • /
    • 2020
  • This study aims to identify participating resident awareness of the improvements to forest carbon cycle villages created by the Korea Forest Service by introducing a system for district heating basedon forest biomass in mountainous areas. Hwacheon Forest Carbon Circulation village was established in Paroho-neureup village in Yuchon-ri, Hwacheon-gun between 2011 and 2013. However, its operation has not been smooth due to the increasing number of households rapidly leaving the district heating system. This study surveyed 76 households that participated in the district heating system using forest biomass in the early stages of the project. This includes households participating in the district heating system(participating households) and households not currently participating in the district heating system(withdrawal households) from September 2019. Surveys focused on the process of participating in forest carbon cycle village projects, and satisfaction in local heating and policy requirements. Of the 67 households, excepting those not allowed to participate in the survey due to death or having moved elsewhere, 36 households participated and 31 households the were in the process of leaving the village were also included. As a result, there was a significant difference between participating and exiting households in the motivation and satisfaction level of district heating. The results of this study are expects to reflect the importance of awareness of residents in the operation of the forest carbon cycle village. This will be utilized as an important dataset for improvement as a means to promote the re-entry if outgoing households. It will also help set the direction of the forest town revitalization project, utilizing forest biomass in the future.

다기능 복합 솔라윈도우 시스템의 에너지성능평가 (The Energy Performance Evaluation of Multi-purpose Solar Window System)

  • 조일식;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.10-15
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window System built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. The reference model of simulation was made up to analysis energy performance on Solar Window system. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.