• Title/Summary/Keyword: Uniprocessors

Search Result 6, Processing Time 0.021 seconds

Sustainability in Real-time Scheduling

  • Burns, Alan;Baruah, Sanjoy
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.74-97
    • /
    • 2008
  • A scheduling policy or a schedulability test is defined to be sustainable if any task system determined to be schedulable remains so if it behaves "better" than mandated by its system specifications. We provide a formal definition of sustainability, and subject the concept to systematic analysis in the context of the uniprocessor scheduling of periodic and sporadic task systems. We argue that it is, in general, preferable engineering practice to use sustainable tests if possible, and classify common uniprocessor schedulability tests according to whether they are sustainable or not.

Accelerating 2D DCT in Multi-core and Many-core Environments (멀티코어와 매니코어 환경에서의 2 차원 DCT 가속)

  • Hong, Jin-Gun;Jung, Sung-Wook;Kim, Cheong-Ghil;Burgstaller, Bernd
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.250-253
    • /
    • 2011
  • Chip manufacture nowadays turned their attention from accelerating uniprocessors to integrating multiple cores on a chip. Moreover desktop graphic hardware is now starting to support general purpose computation. Desktop users are able to use multi-core CPU and GPU as a high performance computing resources these days. However exploiting parallel computing resources are still challenging because of lack of higher programming abstraction for parallel programming. The 2-dimensional discrete cosine transform (2D-DCT) algorithms are most computational intensive part of JPEG encoding. There are many fast 2D-DCT algorithms already studied. We implemented several algorithms and estimated its runtime on multi-core CPU and GPU environments. Experiments show that data parallelism can be fully exploited on CPU and GPU architecture. We expect parallelized DCT bring performance benefit towards its applications such as JPEG and MPEG.

An On-line Algorithm to Search Minimum Total Error for Imprecise Real-time Tasks with 0/1 Constraint

  • Song Gi-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1589-1596
    • /
    • 2005
  • The imprecise real-time system provides flexibility in scheduling time-critical tasks. Most scheduling problems of satisfying both 0/1 constraint and timing constraints, while the total error is minimized, are NP complete when the optional tasks have arbitrary processing times. Liu suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on uniprocessors for minimizing the total error. Song et al suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on multiprocessors for minimizing the total error. But, these algorithms are all off-line algorithms. On the other hand, in the case of on line scheduling, Shih and Liu proposed the NORA algorithm which can find a schedule with the minimum total error for a task system consisting solely of on-line tasks that are ready upon arrival. But, for the task system with 0/1 constraint, it has not been known whether the NORA algorithm can be optimal or not in the sense that it guarantees all mandatory tasks are completed by their deadlines and the total error is minimized. So, this paper suggests an optimal algorithm to search minimum total error for the imprecise on-line real-time task system with 0/1 constraint. Furthermore, the proposed algorithm has the same complexity, O(N log N), as the NORA algorithm, where N is the number of tasks.

  • PDF

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks

  • Song, Gi-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1741-1751
    • /
    • 2007
  • The imprecise computation technique ensures that all time-critical tasks produce their results before their deadlines by trading off the quality of the results for the computation time requirements of the tasks. In the imprecise computation, most scheduling problems of satisfying both 0/1 constraints and timing constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary processing times. In the previous studies, the reasonable strategies of scheduling tasks with the 0/1 constraints on uniprocessors and multiprocessors for minimizing the total error are proposed. But, these algorithms are all off-line algorithms. Then, in the on-line scheduling, NORA(No Off-line tasks and on-line tasks Ready upon Arrival) algorithm can find a schedule with the minimum total error. In NORA algorithm, EDF(Earliest Deadline First) strategy is adopted in the scheduling of optional tasks. On the other hand, for the task system with 0/1 constraints, NORA algorithm may not suitable any more for minimizing total error of the imprecise tasks. Therefore, in this paper, an on-line algorithm is proposed to minimize total error for the imprecise real-time task system with 0/1 constraints. This algorithm is suitable for the imprecise on-line system with 0/1 constraints. Next, to evaluate performance of this algorithm, a series of experiments are done. As a consequence of the performance comparison, it has been concluded that IOSMTE(Imprecise On-line Scheduling to Minimize Total Error) algorithm proposed in this paper outperforms LOF(Longest Optional First) strategy and SOF(Shortest Optional First) strategy for the most cases.

  • PDF

An Efficient Algorithm to Minimize Total Error of the Imprecise Real Time Tasks with 0/1 Constraint (0/1 제약조건을 갖는 부정확한 실시간 태스크들의 총오류를 최소화시키는 효율적인 알고리즘)

  • Song, Gi-Hyeon
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.309-320
    • /
    • 2006
  • The imprecise real-time system provides flexibility in scheduling time-critical tasks. Most scheduling problems of satisfying both 0/1 constraint and timing constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary processing times. Liu suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on uniprocessors for minimizing the total error. Song et al suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on multiprocessors for minimizing the total error. But, these algorithms are all off-line algorithms. In the online scheduling, NORA algorithm can find a schedule with the minimum total error for the imprecise online task system. In the NORA algorithm, the EDF strategy is adopted in the optional scheduling.<중략> The algorithm, proposed in this paper, can be applied to some applications efficiently such as radar tracking, image processing, missile control and so on.

  • PDF

An Improved Online Algorithm to Minimize Total Error of the Imprecise Tasks with 0/1 Constraint (0/1 제약조건을 갖는 부정확한 태스크들의 총오류를 최소화시키기 위한 개선된 온라인 알고리즘)

  • Song, Gi-Hyeon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.10
    • /
    • pp.493-501
    • /
    • 2007
  • The imprecise real-time system provides flexibility in scheduling time-critical tasks. Most scheduling problems of satisfying both 0/1 constraint and timing constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary processing times. Liu suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on uniprocessors for minimizing the total error. Song et at suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on multiprocessors for minimizing the total error. But, these algorithms are all off-line algorithms. In the online scheduling, the NORA algorithm can find a schedule with the minimum total error for the imprecise online task system. In NORA algorithm, EDF strategy is adopted in the optional scheduling. On the other hand, for the task system with 0/1 constraint, EDF_Scheduling may not be optimal in the sense that the total error is minimized. Furthermore, when the optional tasks are scheduled in the ascending order of their required processing times, NORA algorithm which EDF strategy is adopted may not produce minimum total error. Therefore, in this paper, an online algorithm is proposed to minimize total error for the imprecise task system with 0/1 constraint. Then, to compare the performance between the proposed algorithm and NORA algorithm, a series of experiments are performed. As a conseqence of the performance comparison between two algorithms, it has been concluded that the proposed algorithm can produce similar total error to NORA algorithm when the optional tasks are scheduled in the random order of their required processing times but, the proposed algorithm can produce less total error than NORA algorithm especially when the optional tasks are scheduled in the ascending order of their required processing times.