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요       약  

Chip manufacture nowadays turned their attention from accelerating uniprocessors to integrating multiple 
cores on a chip. Moreover desktop graphic hardware is now starting to support general purpose computation. 
Desktop users are able to use multi-core CPU and GPU as a high performance computing resources these days. 
However exploiting parallel computing resources are still challenging because of lack of higher programming 
abstraction for parallel programming. The 2-dimensional discrete cosine transform (2D-DCT) algorithms are most 
computational intensive part of JPEG encoding. There are many fast 2D-DCT algorithms already studied. We 
implemented several algorithms and estimated its runtime on multi-core CPU and GPU environments. 
Experiments show that data parallelism can be fully exploited on CPU and GPU architecture. We expect 
parallelized DCT bring performance benefit towards its applications such as JPEG and MPEG. 

 

1. Introduction 

Because fundamental laws of physics prevent further 
performance increases with uniprocessor architectures, chip 
manufacturers are now utilizing Moore’s law to integrate 
more and more processors on a single chip. In 2001, IBM 
released the world’s first non-embedded dual-core processor. 
In 2008, Intel launched the Core i7 CPU with 8 logical cores 
with hyper threading. Today more than 90% of processors 
available have at least 2 cores. 

In terms of the number of processors on a single chip, 
Graphical Processing Units (GPUs) already integrate several 
hundred compute units. People traditionally regarded GPUs 
as fast graphic renderers. However, with the provision of 
general purpose programing abstractions such as CUDA and 
OpenCL, general purpose GPUs (GPGPUs) have become a 
driving force in the server market for scientific computing. 
GPGPUs are nowadays an integral part of desktop computers, 
and they are about to enter the embedded market as well, esp. 
in the area of smartphones, tablets and internet TVs. 

Because of a glaring lack of higher programming 
abstractions, GPGPU programming is still a challenging task. 
[6] The 2-dimensional discrete cosine transform (2D-DCT) 
algorithm is the most computationally intense part of JPEG 
encoding [5]. Many researchers have studied fast 2D DCT 
algorithms. In this paper we investigate the performance of 
various 2D DCT algorithms on multi-core CPUs and 
GPGPUs. We investigated specifically how algorithms can 
be adapted for GPGPU memory models. 

 
 

2. Multi- and Many-core Programming Environments 

2.1. Threading Building Blocks 
 

Intel Thread Building Blocks (TBBs, [4]) provide an API 
for programmers to exploit parallelism on the level of tasks 
rather than threads. A task is a code block that contains 
computations including procedure calls. Tasks have shorter 
code blocks than threads which allows the TBB run-time 
system to achieve load balanced program execution on multi-
core hardware. The TBB run-time system dynamically 
allocates tasks to processors using global and local task 
queues. Whenever a local task queue for a processor runs out 
of tasks, it steals tasks from the global task queue to prevent 
load imbalance [3]. 

 
2.2. CUDA 
 
NVIDIA, one of the major graphic hardware vendors, has 

developed a standard programming framework for GPGPU 
computing, called Compute Unified Device Architecture 
(CUDA, [2]). CUDA allows programmers to make use of 
GPGPUs for general purpose computing other than using 
openGL. CUDA-enabled graphics hardware has dozens of 
Stream Multi-Processors (SMs) and each SM provides 8 
cores. Threads in the same SM are allowed to access fast on-
chip memory called local memory. Because of its high 
memory bandwidth, programmers are recommended to use 
local memory to optimize programs. By exploiting multiple 
compute units and high memory bandwidth, programmers 
can achieve enormous data parallelism on GPGPUs. 
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2.3. OpenCL 
 
OpenCL [1] is a new programming standard for various 

compute devices including GPGPUs. CUDA and openCL 
architecture models and programming APIs are very similar, 
apart from subtle differences wrt. terminology. All features of 
CUDA are mapped onto OpenCL programming primitives, 
including memory hierarchy and thread model. Already now, 
a variety of high performance computing devices support 
OpenCL, e.g., the IBM Cell BE architecture, GPGPUs from 
NVIDIA and ATI, and AMD CPUs. In this study we use 
OpenCL for our portable implementation of a 2D DCT 
algorithm. 
 

 
 

(Figure 1) GPU architecture in CUDA 
 

3. 2D 8x8 DCT algorithms 

 
The DCT is a foundation of many image and video coding 

standards such as MPEG and JPEG. DCT enables efficient 
coding with respect to quality measurement and simplicity 
[5]. The 8x8 two-dimensional DCT is defined as follows: 

 

 
The formula can be converted to matrix form.  
 
  

 
 

 
  
Applying 1D DCT on every column of an 8x8 array and 

then applying 1D DCT on every row of the result is 
equivalent to an 8x8 2D DCT. Therefore some serial 8x8 

DCT algorithms rely on fast 1D DCT. In this study, we 
investigate three 2D DCT algorithms adapted for different 
hardware architectures. 

 
4. Implementation 

We implemented 3 different 2D 8x8 DCT using TBB and 
OpenCL. First we directly mapped the formula to naïve 
version implementation. Naïve version has mathematical 
function call such as cosine and square root function as 
described in Fig. 2. 

 
: Naive8x8DCT(In, Out) 
1: for x in 1..SIZE loop 
2:   for y in 1..SIZE loop 
3: if x mod 8=0 then c(x)←sqrt(1/8) else c(u):=1/2 
4: if y mod 8=0 then c(y)←sqrt(1/8) else c(u):=1/2 
5:      for i in 0..7 loop 
6:        for j in 0..7 loop 
7:          Out(x,y)←In(x,y) * cosf(i) * cosf(j) 
8: end loop 
9: end loop 
10:   Out(x,y)←Out(x,y) * c(x) * c(y) 
11:   end loop 
12: end loop 

 
(Figure 2) Pseudo code for naïve implementation 

 
To reduce mathematical function cost and improve 

performance, we used matrix form of the formula for second 
implementation. Every cosine function calls are replaced by 
constant element of matrix T. In this version of 
implementation 8x8 DCT is done by performing two matrix 
multiplication operations as Fig. 3 shows. However, unlike 
previous algorithm, if we execute Matrix8x8DCT in parallel 
using TBB or OpenCL, each thread will compute 8x8 pixels. 
If target hardware has a higher number of cores than the 
number of 8x8 blocks in input, for example, GPU, we will 
get some loss in parallelism. 

  
: Matrix8x8DCT(In, Out) 
1: for x in 1..SIZE loop 
2:   for y in 1..SIZE loop 
3: /* Perform two matrixes multiplication op */ 
4: Tmp←MatrixMultiply(In, transpose(M)); 
5:     Out←MatrixMultiply(M, Tmp); 
6:   end loop 
7: end loop 

 
(Figure 3) Pseudo code for matrix multiplication version 

implementation 
 
: Matrix8x8DCT2(In, Out) 
1: for x in 1..SIZE loop 
2:   for y in 1..SIZE loop 
3: for z in 1..8 loop 
4: Tmp(x,y)←Tmp(x,y)+M(x,z)*In(z,y) 
5:     end loop 
6: for z in 1..8 loop 
7: Out(x,y)←Out(x,y)+Tmp(x,z)*MT(z,y) 
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8:     end loop 
9:   end loop 
10: end loop 

 
(Figure 4) Pseudo code for revised version of Fig.3 

 
Figure. 4 describes revised implementation which performs 
fine grained parallelism, that is each thread compute DCT for 
single pixel. To ensure first matrix multiplication operation is 
done, we need a barrier between line 5 and line 6 in Fig. 4 in 
concurrent programming. In OpenCL implementation, we 
used local memory for temporary variable Tmp (line 4 and 7 
in Fig. 4) to mitigate global memory access overhead. 

In practice many 8x8 DCT implementations use row and 
column scanning algorithm using fast 1D DCT. Fast 1D DCT 
algorithm commonly are unrolled and has less addition and 
multiplication operations compared to its original algorithm. 
 
: RowColScanningDCT(In, Out) 
1: for x in 1..SIZE loop 
2:   for y in 1..SIZE loop 
3:     /* process 1D DCT row wise */ 
4: for k in 1..8 loop 
5: 1D_DCT8(Out(x+k, y), In(x+k ,y)); 
6:     end loop 
7: /* process 1D DCT column wise */ 
8: for k in 1..8 loop 
9: ID_DCT8(Out(x,y+k), In(x, y+k)) 
10:     end loop 
11:   end loop 
12: end loop 
 

(Figure 5) Pseudo code for row and column scanning DCT 
algorithm implementation 

 
Fig. 5 shows how 2D 8x8 DCT can be implemented using 
fast 1D DCT. However, Fig. 5 performs DCT on 8x8 block 
each iteration so in parallel version of this implementation 
using TBB or OpenCL each thread will cover a 8x8 block. 
 
5. Experimental Results 

All experiment was done with Intel Core i5 CPU which 
has 4 processors, 2.67GHz clock speed and NVIDIA GTX 
275 GPU which contains 240 CUDA cores (1404MHz) and 
supports device compute capability 1.3 and OpenCL 1.0. All 
implementations were compiled by gcc 4.1.2. 

Because of a number of expensive mathematical function 
call, naïve version implementation showed very slow 
performance on serial program on CPU. The algorithm 
consists of independent computation blocks so that TBB and 
OpenCL are able to exploit data parallelism. In OpenCL 
implantation, each thread access 8x8 local block 64 times. 
Therefore each pixel of the block is accessed 64 times. This 
frequent accessing pattern can be optimized using on chip 
local memory. We could achieve 5x more speed up using 
local memory which is faster than global memory access.  
 
 
 
 

<Table 1> Execution time for naïve DCT algorithm 
implementation 

 
 1024x1024 2048x2048 4096x4096 
Serial 5.809 23.177 92.650 
TBB 1.722 6.888 27.555 
Speedup 3.373 3.364 3.362 
OpenCL(g.mem) 0.014 0.058 0.140 
Speedup 264.045 257.522 256.648 
OpenCL(l.mem) 0.001 0.005 0.019 
Speedup 5811 4634.4 4876.7 
 

OpenCL version of naïve DCT algorithm showed about 
4000x speed up using local memory compared to serial 
version. GPUs support powerful transcendental operation 
and native mathematical procedure call so that we could get 
speed up more than the number of cores GPU has. [7] 

 
<Table 2> Execution time for DCT algorithm 
implementation using matrix multiplication 

 
 1024x1024 2048x2048 4096x4096
Serial 0.157 0.576 2.258 
TBB 0.032 0.130 0.522 
Speedup 4.906 4.430 4.325 
OpenCL(g.mem) 0.016 0.066 0.265 
Speedup 10.18 8.77 8.49 
OpenCL(l.mem) 0.001 0.005 0.015 
Speedup 130 122 125.7 
 
Table. 2 shows that serial version of matrix multiplication 
version implementation shows better performance than naïve 
version so that overall speedup decreases. We could get 100x 
more speedup replacing global memory access with local 
memory access. Moreover local memory version could use 
local barrier that enables to implement fine grained version 
of implementation in Fig. 4. 
 
<Table 3> Execution time for row and column scanning DCT 

algorithm implementation 
 
 1024x1024 2048x2048 4096x4096 
Serial 0.007 0.029 0.115 
TBB 0.004 0.017 0.068 
Speedup 1.75 1.71 1.69 
OpenCL 0.00024 0.00068 0.00217 
Speedup 10.18 8.77 8.49 
 
Table 3. describes that row and column scanning for DCT is 
fastest algorithm. Although algorithm itself has coarse 
grained tasks, because of highly optimized 1D DCT overall 
runtime is reduced. 

The sequential implementation suffers from high 
overheads due to the transcendental functions. DCT using 
matrix multiplication was about 40x faster. With TBB, our 
speedups were a factor of 3x over the sequential version. On 
the GPGPU, we achieved a speedup of 4000x, 100x, 10x for 
naïve, matrix multiplication and row and column scanning 
DCT respectively. Facilitating GPGPU local memory yielded 
an additional about 10x speed up. 
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6. Conclusion 

We have presented several implementations of 2D 8x8 DCT 
algorithms in multi-core CPU and GPU hardware 
environments. Because of its task independent characteristic 
like common image processing algorithms, we focused on 
accelerating DCT algorithm using data parallelism. By 
experiments we found that accelerating DCT is promising 
both in multi-core CPUs and GPUs. We expect that parallel 
DCT can speed up real world applications such as JPEG 
encoding.  
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