
제35회 한국정보처리학회 춘계학술대회 논문집 제18권 1호 (2011. 5)

멀티코어와 매니코어 환경에서의 2차원 DCT 가속

홍진건*, 정성욱*, 김정길**, Bernd Burgstaller*
*연세대학교 컴퓨터과학과

**남서울대학교 컴퓨터학과
e-mail : ginug@yonsei.ac.kr

Accelerating 2D DCT in Multi-core and Many-core
Environments

Jingun Hong*, Sungwook Jung*, Cheong Ghil Kim**, Bernd Burgstaller*
*Dept. of Computer Science, Yonsei University

**Dept. of Computer Science, Namseoul University

요 약

Chip manufacture nowadays turned their attention from accelerating uniprocessors to integrating multiple
cores on a chip. Moreover desktop graphic hardware is now starting to support general purpose computation.
Desktop users are able to use multi-core CPU and GPU as a high performance computing resources these days.
However exploiting parallel computing resources are still challenging because of lack of higher programming
abstraction for parallel programming. The 2-dimensional discrete cosine transform (2D-DCT) algorithms are most
computational intensive part of JPEG encoding. There are many fast 2D-DCT algorithms already studied. We
implemented several algorithms and estimated its runtime on multi-core CPU and GPU environments.
Experiments show that data parallelism can be fully exploited on CPU and GPU architecture. We expect
parallelized DCT bring performance benefit towards its applications such as JPEG and MPEG.

1. Introduction

Because fundamental laws of physics prevent further
performance increases with uniprocessor architectures, chip
manufacturers are now utilizing Moore’s law to integrate
more and more processors on a single chip. In 2001, IBM
released the world’s first non-embedded dual-core processor.
In 2008, Intel launched the Core i7 CPU with 8 logical cores
with hyper threading. Today more than 90% of processors
available have at least 2 cores.

In terms of the number of processors on a single chip,
Graphical Processing Units (GPUs) already integrate several
hundred compute units. People traditionally regarded GPUs
as fast graphic renderers. However, with the provision of
general purpose programing abstractions such as CUDA and
OpenCL, general purpose GPUs (GPGPUs) have become a
driving force in the server market for scientific computing.
GPGPUs are nowadays an integral part of desktop computers,
and they are about to enter the embedded market as well, esp.
in the area of smartphones, tablets and internet TVs.

Because of a glaring lack of higher programming
abstractions, GPGPU programming is still a challenging task.
[6] The 2-dimensional discrete cosine transform (2D-DCT)
algorithm is the most computationally intense part of JPEG
encoding [5]. Many researchers have studied fast 2D DCT
algorithms. In this paper we investigate the performance of
various 2D DCT algorithms on multi-core CPUs and
GPGPUs. We investigated specifically how algorithms can
be adapted for GPGPU memory models.

2. Multi- and Many-core Programming Environments

2.1. Threading Building Blocks

Intel Thread Building Blocks (TBBs, [4]) provide an API
for programmers to exploit parallelism on the level of tasks
rather than threads. A task is a code block that contains
computations including procedure calls. Tasks have shorter
code blocks than threads which allows the TBB run-time
system to achieve load balanced program execution on multi-
core hardware. The TBB run-time system dynamically
allocates tasks to processors using global and local task
queues. Whenever a local task queue for a processor runs out
of tasks, it steals tasks from the global task queue to prevent
load imbalance [3].

2.2. CUDA

NVIDIA, one of the major graphic hardware vendors, has

developed a standard programming framework for GPGPU
computing, called Compute Unified Device Architecture
(CUDA, [2]). CUDA allows programmers to make use of
GPGPUs for general purpose computing other than using
openGL. CUDA-enabled graphics hardware has dozens of
Stream Multi-Processors (SMs) and each SM provides 8
cores. Threads in the same SM are allowed to access fast on-
chip memory called local memory. Because of its high
memory bandwidth, programmers are recommended to use
local memory to optimize programs. By exploiting multiple
compute units and high memory bandwidth, programmers
can achieve enormous data parallelism on GPGPUs.

- 250 -

제35회 한국정보처리학회 춘계학술대회 논문집 제18권 1호 (2011. 5)

2.3. OpenCL

OpenCL [1] is a new programming standard for various

compute devices including GPGPUs. CUDA and openCL
architecture models and programming APIs are very similar,
apart from subtle differences wrt. terminology. All features of
CUDA are mapped onto OpenCL programming primitives,
including memory hierarchy and thread model. Already now,
a variety of high performance computing devices support
OpenCL, e.g., the IBM Cell BE architecture, GPGPUs from
NVIDIA and ATI, and AMD CPUs. In this study we use
OpenCL for our portable implementation of a 2D DCT
algorithm.

(Figure 1) GPU architecture in CUDA

3. 2D 8x8 DCT algorithms

The DCT is a foundation of many image and video coding

standards such as MPEG and JPEG. DCT enables efficient
coding with respect to quality measurement and simplicity
[5]. The 8x8 two-dimensional DCT is defined as follows:

The formula can be converted to matrix form.

Applying 1D DCT on every column of an 8x8 array and

then applying 1D DCT on every row of the result is
equivalent to an 8x8 2D DCT. Therefore some serial 8x8

DCT algorithms rely on fast 1D DCT. In this study, we
investigate three 2D DCT algorithms adapted for different
hardware architectures.

4. Implementation

We implemented 3 different 2D 8x8 DCT using TBB and
OpenCL. First we directly mapped the formula to naïve
version implementation. Naïve version has mathematical
function call such as cosine and square root function as
described in Fig. 2.

: Naive8x8DCT(In, Out)
1: for x in 1..SIZE loop
2: for y in 1..SIZE loop
3: if x mod 8=0 then c(x)←sqrt(1/8) else c(u):=1/2
4: if y mod 8=0 then c(y)←sqrt(1/8) else c(u):=1/2
5: for i in 0..7 loop
6: for j in 0..7 loop
7: Out(x,y)←In(x,y) * cosf(i) * cosf(j)
8: end loop
9: end loop
10: Out(x,y)←Out(x,y) * c(x) * c(y)
11: end loop
12: end loop

(Figure 2) Pseudo code for naïve implementation

To reduce mathematical function cost and improve

performance, we used matrix form of the formula for second
implementation. Every cosine function calls are replaced by
constant element of matrix T. In this version of
implementation 8x8 DCT is done by performing two matrix
multiplication operations as Fig. 3 shows. However, unlike
previous algorithm, if we execute Matrix8x8DCT in parallel
using TBB or OpenCL, each thread will compute 8x8 pixels.
If target hardware has a higher number of cores than the
number of 8x8 blocks in input, for example, GPU, we will
get some loss in parallelism.

: Matrix8x8DCT(In, Out)
1: for x in 1..SIZE loop
2: for y in 1..SIZE loop
3: /* Perform two matrixes multiplication op */
4: Tmp←MatrixMultiply(In, transpose(M));
5: Out←MatrixMultiply(M, Tmp);
6: end loop
7: end loop

(Figure 3) Pseudo code for matrix multiplication version

implementation

: Matrix8x8DCT2(In, Out)
1: for x in 1..SIZE loop
2: for y in 1..SIZE loop
3: for z in 1..8 loop
4: Tmp(x,y)←Tmp(x,y)+M(x,z)*In(z,y)
5: end loop
6: for z in 1..8 loop
7: Out(x,y)←Out(x,y)+Tmp(x,z)*MT(z,y)

- 251 -

제35회 한국정보처리학회 춘계학술대회 논문집 제18권 1호 (2011. 5)

8: end loop
9: end loop
10: end loop

(Figure 4) Pseudo code for revised version of Fig.3

Figure. 4 describes revised implementation which performs
fine grained parallelism, that is each thread compute DCT for
single pixel. To ensure first matrix multiplication operation is
done, we need a barrier between line 5 and line 6 in Fig. 4 in
concurrent programming. In OpenCL implementation, we
used local memory for temporary variable Tmp (line 4 and 7
in Fig. 4) to mitigate global memory access overhead.

In practice many 8x8 DCT implementations use row and
column scanning algorithm using fast 1D DCT. Fast 1D DCT
algorithm commonly are unrolled and has less addition and
multiplication operations compared to its original algorithm.

: RowColScanningDCT(In, Out)
1: for x in 1..SIZE loop
2: for y in 1..SIZE loop
3: /* process 1D DCT row wise */
4: for k in 1..8 loop
5: 1D_DCT8(Out(x+k, y), In(x+k ,y));
6: end loop
7: /* process 1D DCT column wise */
8: for k in 1..8 loop
9: ID_DCT8(Out(x,y+k), In(x, y+k))
10: end loop
11: end loop
12: end loop

(Figure 5) Pseudo code for row and column scanning DCT
algorithm implementation

Fig. 5 shows how 2D 8x8 DCT can be implemented using
fast 1D DCT. However, Fig. 5 performs DCT on 8x8 block
each iteration so in parallel version of this implementation
using TBB or OpenCL each thread will cover a 8x8 block.

5. Experimental Results

All experiment was done with Intel Core i5 CPU which
has 4 processors, 2.67GHz clock speed and NVIDIA GTX
275 GPU which contains 240 CUDA cores (1404MHz) and
supports device compute capability 1.3 and OpenCL 1.0. All
implementations were compiled by gcc 4.1.2.

Because of a number of expensive mathematical function
call, naïve version implementation showed very slow
performance on serial program on CPU. The algorithm
consists of independent computation blocks so that TBB and
OpenCL are able to exploit data parallelism. In OpenCL
implantation, each thread access 8x8 local block 64 times.
Therefore each pixel of the block is accessed 64 times. This
frequent accessing pattern can be optimized using on chip
local memory. We could achieve 5x more speed up using
local memory which is faster than global memory access.

<Table 1> Execution time for naïve DCT algorithm
implementation

 1024x1024 2048x2048 4096x4096
Serial 5.809 23.177 92.650
TBB 1.722 6.888 27.555
Speedup 3.373 3.364 3.362
OpenCL(g.mem) 0.014 0.058 0.140
Speedup 264.045 257.522 256.648
OpenCL(l.mem) 0.001 0.005 0.019
Speedup 5811 4634.4 4876.7

OpenCL version of naïve DCT algorithm showed about
4000x speed up using local memory compared to serial
version. GPUs support powerful transcendental operation
and native mathematical procedure call so that we could get
speed up more than the number of cores GPU has. [7]

<Table 2> Execution time for DCT algorithm
implementation using matrix multiplication

 1024x1024 2048x2048 4096x4096
Serial 0.157 0.576 2.258
TBB 0.032 0.130 0.522
Speedup 4.906 4.430 4.325
OpenCL(g.mem) 0.016 0.066 0.265
Speedup 10.18 8.77 8.49
OpenCL(l.mem) 0.001 0.005 0.015
Speedup 130 122 125.7

Table. 2 shows that serial version of matrix multiplication
version implementation shows better performance than naïve
version so that overall speedup decreases. We could get 100x
more speedup replacing global memory access with local
memory access. Moreover local memory version could use
local barrier that enables to implement fine grained version
of implementation in Fig. 4.

<Table 3> Execution time for row and column scanning DCT

algorithm implementation

 1024x1024 2048x2048 4096x4096
Serial 0.007 0.029 0.115
TBB 0.004 0.017 0.068
Speedup 1.75 1.71 1.69
OpenCL 0.00024 0.00068 0.00217
Speedup 10.18 8.77 8.49

Table 3. describes that row and column scanning for DCT is
fastest algorithm. Although algorithm itself has coarse
grained tasks, because of highly optimized 1D DCT overall
runtime is reduced.

The sequential implementation suffers from high
overheads due to the transcendental functions. DCT using
matrix multiplication was about 40x faster. With TBB, our
speedups were a factor of 3x over the sequential version. On
the GPGPU, we achieved a speedup of 4000x, 100x, 10x for
naïve, matrix multiplication and row and column scanning
DCT respectively. Facilitating GPGPU local memory yielded
an additional about 10x speed up.

- 252 -

제35회 한국정보처리학회 춘계학술대회 논문집 제18권 1호 (2011. 5)

6. Conclusion

We have presented several implementations of 2D 8x8 DCT
algorithms in multi-core CPU and GPU hardware
environments. Because of its task independent characteristic
like common image processing algorithms, we focused on
accelerating DCT algorithm using data parallelism. By
experiments we found that accelerating DCT is promising
both in multi-core CPUs and GPUs. We expect that parallel
DCT can speed up real world applications such as JPEG
encoding.

Acknowledgment

This research was supported partly by Basic Science
Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education,
Science and Technology (KRF 2010-0 0028047, KRF 2010-0
005234).

References

[1] Khronos OpenCL Working Group, The OpenCL
Specification, Version 1.1, 2010.

[2] John Nickolls, Ian Buck, Michael Garland and Kevin
Skadron, Scalable Parallel Programming with CUDA,
ACM Queue, Vol. 6 (2), ACM, 2008.

[3] Gilberto Contreras, Margaret Martonosi. Characterizing
and Impoving the Performance of Intel Threading
Building Blocks, IEEE International Symposium on
Workload Characterization, 2008.

[4] James Reinders. Intel Threading Building Blocks.
O’Reilly, 2007.

[5] William B. Pennebaker, Joan L. Mitchell, JPEG Still
Image Data Compression Standard, Van Nostrand
Reinhold, 1993.

[6] Jongtae Park, Beorn Faccini, Jingun Hong, Bernd
Burgstaller, Implementing Efficient Camera ISP Filters on
GPGPUs Using OpenCL, Korea Information Processing
Society, 2010. 11.

[7] Victor W Lee et al, Debunking the 100x GPU vs. CPU
myth: an evaluation of throughput computing on CPU
and GPU, ACM SIGRACH Computer Architecture News,
2010.

- 253 -

