JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007(pp. 1741-1751)

Scheduling Algorithm to Minimize Total Error for
Imprecise On-Line Tasks

Gi-Hyeon Song*

ABSTRACT

The imprecise computation technique ensures that all time-critical tasks produce their results before
their deadlines by trading off the quality of the results for the computation time requirements of the tasks.
In the imprecise computation, most scheduling problems of satisfying both 0/1 constraints and timing
constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary
processing times. In the previous studies, the reasonable strategics of scheduling tasks with the 0/1
constraints on uniprocessors and multiprocessors for minimizing the total error are proposed. But, these
algorithms are all off-line algorithms. Then, in the on-line scheduling, NORA(No Off-line tasks and
on-line tasks Ready upon Arrival) algorithm can find a schedule with the minimum total error. In NORA
algorithm, EDF(Earliest Deadline First) strategy is adopted in the scheduling of optional tasks. On the
other hand, for the task system with 0/1 constraints, NORA algorithm may not suitable any more for
minimizing total error of the imprecise tasks. Therefore, in this paper, an on-line algorithm is proposed
to minimize total error for the imprecise real-time task system with 0/1 constraints. This algorithm is
suitable for the imprecise on-line system with 0/1 constraints. Next, to evaluate performance of this
algorithm, a series of experiments are done. As a consequence of the performance comparison, it has
been concluded that IOSMTE(Imprecise On-tine Scheduling to Minimize Total Error) algorithm proposed
in this paper outperforms LOF(Longest Optional First) strategy and SOF(Shortest Optional First) strategy
for the most cases.

Keywords: Performance Comparison, Selection Strategy, Imprecise On-Line Scheduling, Minimize Total

Error, 0/1 Constraints, IOSMTE Algorithm

1. INTRODUCTION

The imprecise real-time system, proposed in [1],
provides flexibility in scheduling time-—critical
tasks. Examples of its applications include image
processing and tracking.

For some applications, execution of the optional
parts is valuable only if they are executed
completely before the deadline, and of no value if
they are executed partially.

The systems with such imprecise tasks are

¥ Corresponding Author : Gi-Hyeon Song, Address :

(300-711) 77-3 Gayang 2-dong, Dong-gu, Daejeon

Korea, TEL : +82-42-670-9292, FAX : +82-42-670-9290,

E-mail : ghsong@hit.ac.kr

Receipt date : Apr. 13, 2007, Approval date : Aug. 27, 2007

* Associate Professor in MIS department at Daejeon
Health Sciences College

called systems with 0/1 constraints.

Most scheduling problems of satisfying both 0/1
constraints and timing constraints, while the total
error is minimized, are NP-complete when the
optional tasks have arbitrary processing times [1].
By the total error, it means the sum of the
processing times of all optional tasks that could not
be scheduled.

In [1}, Liu suggested a reasonable strategy of
scheduling tasks with the 0/1 constraints on
uniprocessors for minimizing the total error. This
method schedules the first optional task with the
longest processing time. This method is called as
LOF(Longest Optional First) strategy. Song et al
suggested a reasonable strategy of scheduling
tasks with the 0/1 constraints on multiprocessors

for minimizing the total error in [2]. The results

1742 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

of this paper show that the longest processing first
selection strategy(LOF strategy) outperforms
random or minimal laxity policy.

On the other hand, in the case of on-line
scheduling[3-7], Shih and Liu proposed NORA(No
Off-line tasks and on-line tasks Ready upon
Arrival) algorithm which can find a schedule with
the minimum total error for a task system
consisting solely of on-line tasks that are ready
upon arrival in [4]. But, for the task system with
0/1 constraints, it has not been known whether
NORA algorithm can be optimal or not in the sense
that it guarantees all mandatory tasks are
completed by their deadlines and the total error is
minimized. In NORA algorithm, the EDF(Earliest
Deadline First) strategyl[8] is adopted in the
optional scheduling.

Furthermore, NORA algorithm is not designed
for the task system with 0/1 constraints. So,
NORA algorithm is not suitable for the task system
with 0/1 constraints.

Hence, in NORA algorithm, the execution of
some mandatory tasks with later deadlines may be
postponed when trying to finish more optional
tasks with earlier deadlines[4].

Therefore, in this paper, an on-line algorithm is
proposed to overcome this shortage of NORA
algorithm. Also, this algorithm is suitable for the
imprecise on-line system with 0/1 constraints to
minimize total error. Then, to evaluate the per-
formance of this algorithm, a series of experiments
are done. The aim of these experiments is to
compare the total errors generated among the
proposed algorithm and LOF(Longest Optional
First) strategy and SOF(Shortest Optional First)
strategy. The reason why LOF and SOF strategy
are to be compared with the proposed algorithm
is as follows.

In the optional scheduling of the imprecise
real-time task system with 0/1 constraints, the
method to select the next task to be scheduled is
simple and restrictive. These selection methods

include LOF, SOF and so on. LOF strategy has
been known as a reasonable strategy of the
imprecise real-time task system with the 0/1
constraints to minimize total error regardless of the
number of processors in the case of off-line
scheduling(1,2].

Next, SOF strategy, reverse to LOF strategy,
needs to be compared.

So, in this paper, intensive simulations are done
to compare total errors generated among the
strategics. The processing times are randomly
generated for the mandatory and optional parts of
tasks.

The rest of this paper is organized as follows;
Section 2 provides an imprecise on-line real-time
task system model. In section 3, the related works
are described.

Section 4 presents an imprecise on-line real-
time scheduling algorithm for minimizing total
error. The results of simulation and analysis are
described in section 5. And section 6 concludes this
paper.

2. IMPRECISE ON-LINE REAL-TIME
TASK SYSTEM MODEL

In this section, an imprecise task model is
described. here are given a set of n tasks, T={T1,
T2, T3, T}, The tasks are preemptable.

Let an imprecise task 7 be composed of the
mandatory part M; and the optional part O;, and
characterized by its arrival time r;, deadline d;, and
computational requirement m; and o; or M; and O;,
respectively. Let P; be the sum of m; and o; (p:
= mi + oj).

Each task 7 is characterized by the following
parameters.

* Ready time (r) : the time instant at which T

becomes ready for execution

* Deadline (d;) : the time instant by which T}

has to be completed

* Processing time (p;) : the time required to

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks 1743

execute the entire T
* Processing time of mandatory part (m;) : the
time required to execute the mandatory part
of task T3
* Processing time of optional part (o:) : the time
required to execute the optional part of task
T
A schedule determines the amount of service
time to be given to each task 77 during the
schedulable interval which is defined as an interval
between the task’s arrival time and its deadline. If
a scheduling algorithm assigns x; units of
execution time for task T3, the error e; of task 7%
becomes pi—xi.

Total error can be defined as follows assuming
that there are n tasks; TE= g}le .

One effective way to minimize the bad effects
of timing faults is to leave less important tasks
unfinished if necessary. In other words, rather than
treating all tasks equally, the system views
important tasks as mandatory and less important
tasks as optional. It ensures that all mandatory
tasks are scheduled and executed to completion
before their deadlines. Optional tasks may be left
unfinished during a transient overload when it is
not feasible to complete all the tasks. The
imprecise computation technique uses this basic
strategy but carries it one step further. In a system
that supports imprecise computations, every time-
critical task is structured in such a way that it can
be logically decomposed into two subtasks: a
mandatory subtask and an optional subtask[1]. On
the other hand, in the imprecise computation
technique, we note that one would gain no benefit
by completing a sieve in part, while incurring the
cost in processing that part. Therefore, an optional
subtask that is a sieve should be either executed
to completion before its deadline or is not
scheduled, that is, discarded, entirely. In this case,
we say that the execution of the optional subtask

satisfies the 0/1 constraints[1]. In the imprecise

tasks satisfying 0/1 constraints, the processing
time p; of some task 77 can be defined as m;+ o;

or mi.

3. RELATED WORKS

There are many different imprecise scheduling
problems. These problems include minimization of
total error[2,4,7,9], minimization of the maximum[3,
10] or average error, minimization of the number
of discarded optional tasks, minimization of the
number of tardy tasks, minimization of the
weighted error[3,11] and minimization of average
response time.

In this paper, the problem of scheduling impre-
cise computations to meet timing constraints and
0/1 constraints[12] is considered for minimizing
total error. As expected, the general problem of
scheduling to meet the 0/1 constraints and timing
constraints as well as to minimize the total error,
is NP-complete when the optional tasks have arbi-
trary processing times [1]. When the processing
times of all optional tasks are equal, the DFS
(Depth-First-Search) algorithm is optimal for
scheduling tasks with timing constraints and the
0/1 constraints to minimize total error [1]. When
the tasks have identical ready times, a simpler al-
gorithm, called the LDF(Latest Deadline First) al-
gorithm can be used to find optimal schedules {1].
A good strategy for scheduling tasks with the 0/1
constraints to minimize total error is to try to
schedule first the optional tasks with long process-
ing times regardless of the number of process—
orsf1,2].

In an earlier paper[13], Shih and Liu proposed
an algorithm(called Algorithm F) that can find
optimal schedules of imprecise, preemptable tasks
with arbitrary ready times and deadlines on a
uniprocessor system.

But, these algorithms are all off-line algorithms.
For the case of imprecise on-line scheduling to

minimize total error(4,6,7], Shih and Liu proposed

1744 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

NORA algorithm which can find a schedule with
the minimum total error for a task system
consisting solely of on-line tasks that are ready
upon arrival in [4]. NORA algorithm is optimal in
the sense that it guarantees all mandatory tasks
are completed by their deadlines and the total error
is minimized. Especially, NORA algorithm main-
tains a reservation list for all mandatory tasks that
have arrived but are not yet completed and uses
it as a guide in deciding where to schedule optional
tasks and how much time to assign to them. So,
NORA algorithm has a good schedulability per-
formance for all mandatory tasks, but for the
optional tasks with 0/1 constraints, it is doubtful
whether NORA algorithm can produce minimum
total error or not. In NORA algorithm, some error
is produced as a result of the EDF(Earliest
Deadline First) scheduling as the scheduler of
NORA algorithm maintains a prioritized task queue
in which tasks are ordered on the EDF basis.
However, when trying to finish more optional tasks
with earlier deadlines, the execution of some
mandatory tasks with later deadlines may be
postponed. This is the main cause of suboptimality
of NORA algorithm[4].

Furthermore, NORA algorithm is not designed
for the task system with 0/1 constraints. So,
NORA algorithm is not suitable for the task system
with 0/1 constraints.

Next, [11] suggests an optimal algorithm to
search minimum total error for the imprecise
on-line real-time task system with 0/1 constraints.
But, this algorithm may cause high complexity in
the worst case.

As a recent study, an imprecise on-line
scheduling algorithm is proposed to minimize total
error when the optional tasks with 0/1 constraints
are scheduled in the ascending order of their
processing requirement time[9]. This algorithm is
designed to improve the defect of the previous
NORA algorithm. But this algorithm is restricted
to task scheduling order.

Therefore, in this paper, an on-line algorithm is
proposed to minimize total error for the imprecise
real-time task system with 0/1 constraints. This
algorithm is suitable for the imprecise on-line
system with 0/1 constraints.

Also, this algorithm can overcome the shortage
of NORA algorithm and do not cause high
complexity in the worst case as the algorithm in
[7]. Also, this algorithm is not restricted to task
scheduling order as the algorithm in [9].

4. MPRECISE ON-LINE TASK SCHEDU-
LING ALGORITHM

In this section, an on-line scheduling algorithm
for the imprecise real-time tasks with 0/1 con-
straints to minimize total error is described. The
following Fig. 1 shows the overview of this
algorithm. Initially, two optional task sets SOL
(Scheduled Optional task List) and OL (Optional
task List) are setted as empty and all optional tasks
of the imprecise system respectively. Next, FT
value is initialized as 0. The FT value denotes the
schedule finishing time.

In this algorithm, at first, the procedure “Set-
SystemParameter” is performed. In this procedure,
all system parameters which are used in generat-
ing the imprecise on-line real-time task system
are determined. These parameters include ARo
(), Armuv), Alamda(\), PiDistribution(p) and
Number Tasks. The meaning of each parameter
is explained in section 5. Next, from the
“GenerateSystem” procedure, an imprecise on-line
real-time task system can be generated randomly.

The next “For loop” is performed whenever a
task T¥(1<i< Number Tasks) arrived. Whenever
an on-line task 7y is arrived, the “Determine-
SchedulableTasks (i)” procedure determines the
schedulable tasks in a time interval [»,, » .],
then the “SortTaskByDeadline” procedure sorts
the schedulable tasks by deadlines in ascending

order.

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks 1745

SOL=g "SOL(Scheduled Optional List) is setted as empty.
OL={0, 0, O+, Onypmpermusis } 'OL(Optional task List) is defined as all optional tasks.
FT=0 '"FT(schedule Finishing Time) is initialized.

.

Call SetSystemParameter

Call GenerateSystem

"Determine task system parameter

'Generate task system.

(ARo, Amu, Alamda, PiDistribution).

4
l i =0
4
—}(l :,i +_1 "Whenever a task 7i has arrived)
while i <= Number Tasks
4
Call DetermineSchedulableTasks (i) "Determine schedulable tasks in [7;,7 ;]
Call SortTaskByDeadline 'Sort the schedulable tasks by deadlines.
¥
If (OnLineCheck= False) Then 'If the on-line tasks are not schedulable,
¥

(OnLineCheck = CheckOnLineSchedulability() 'Check on-line schedulability of the tasks.)

& YES
Ijerminate this algorithm.]

NO

Call ImpreciseOnlineScheduling (7, 7 ;, 7 ;4 |)

"Perform on-line scheduling in [7;, 7, ,].

e

TE = Eo],n] € OL
=1

'Compute TE(Total Error).

Fig. 1. Overview of the proposed algorithm.

Next, the on-line schedulability check function
“CheckOnLineSchedulability ()" is performed. This
fuction checks the schedulability of the schedulable
tasks on T arrival[11]. Even though only one task
turned to be not schedulable, this algorithm is ter—
minated abnormally. If the tasks are turned to be
all schedulable, the final procedure “Imprecise—
OnLineScheduling” can be performed in the time
interval [7, 7 ;4 (]

The following Fig. 2 represents “Imprecise-
OnlineScheduling” procedure. Hereafter, “Impre-
ciseOnlineScheduling” procedure is called as
IOSMTE algorithm. The proposed IOSMTE algo-

rithm works as follows; In the time interval

[#, »,.1) on an task T /s arrival, it schedules
the mandatory parts of all schedulable tasks with
the earliest deadline first. If any processing time
is available after executing the mandatory parts of
all tasks that can be scheduled then the algorithm
executes the optional parts of the schedulable tasks
in order to minimize total error. This scheduling
order in some time interval [» ;, # ;) is the main
of the proposed IOSMTE algorithm.
Therefore, in the optional scheduling of IOSMTE
algorithm, the execution of some mandatory tasks

focus

with later deadlines may not be postponed due to
the optional tasks with earlier deadlines.

In this optional scheduling, 0/1 constraints can

1746 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

Sub ImpreciseOnlineScheduling (T%d, Cur T ime, Deadline)
i, 7, k, Task, Length, NbtPrevStep As Integer

Dim

====z============s================== Mandatory Scheduling
‘Initialize mandatory service time of all

For j=1 To NbtPrevStep
[CurTime, Deadline).
Task= ListTask(j)
T 1y RunningYi=0
Next j

Length= Deadline— CurTime

i=1
While (i< NbtPrevStep)
Task= ListTask(1)
It (Length>m 1,,) Then
T 14 RunningYi=m 5,
Length= Length— m 1,

Else
T pusp- RunningYi= Length
Length=10

End If

FT=Max2(FT, 7 7,4)
FT=FT+ T ;,,. Running¥Vi

i=i+1
Wend

Call ReComputeMi

k=1
while (k < NbtPrevStep)

Task = List Task (k)

If (Length > oq4) Then
SOL = SOLU {op4}
Length = Length — o,

End If

k=k+1

wend
End Sub

'Decrease each mandatory computational requirement of all scheduled mandatory tasks
in the interval [CurTime, Deadline] by its allocated mandatory service time.

==== QOptional Scheduling = ===

schedulable tasks in

‘Calculate a schedule length of the interval [CurTime, Deadline).

‘For all schedulable tasks in [CurTime, Deadlinel
'Select a task in ascending order of deadline.
'If the schedule length is greater than m 1,

‘Allocate m 1, t0 T 7,4
"The schedule length is decreased by m 1.

'If the schedule length is not greater than m 1,4
"Allocate the schedule length to T 1,4

"The schedule length becomes zero.

"Set the schedule finishing time.

'Increase the schedule finishing time by T 5,4's
allocated mandatory service time.
'Increase task index i by one.

'Schedule the optional tasks by the order of fast deadlines.

‘For all schedulable tasks in [CurTime, Deadline]
'Select a task in ascending order of deadline.

‘If a remaining schedule length is greater than o 5,
‘Include 0 1,y to SOL.
"The remaining schedule length is decreased by 0 7,4

'Increase task index k by one.

be applied. Thus, in this paper, three different heu-
ristic selection strategics are considered. These
strategics include LOF, SOF and EDF strategy.

Fig. 2. ‘ImpreciseOnlineScheduling’ procedure.

Longest Optional First(LOF) strategy selects one
task with the longest optional first among the
schedulable optional tasks in the time interval.

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks 1747

Shortest Optional First(SOF) strategy selects one
task with the shortest optional first.

Finally, Earliest Deadline First(EDF) strategy
selects one optional task according to the order of
fast deadline. The proposed IOSMTE algorithm
adopts this strategy. The reason why LOF strat-
egy is considered is that it has been known as a
reasonable strategy for minimizing total error in
the scheduling of imprecise off-line tasks with /1
constraints regardless of the number of process—
ors[1,2]. Next, SOF strategy is considered to com-
pare the performance of minimizing total error with
LOF strategy.

Finally, EDF strategy is considered as it is
adopted in the optional scheduling of NORA algo-
rithm([4] which has been proved optimal in finding
a schedule with the minimum total error for the
imprecise on-line tasks without 0/1 constraints.
The proposed IOSMTE algorithm adopts EDF
strategy in the optional scheduling of imprecise
on-line real-time tasks with 0/1 constraints. A
major difference between IOSMTE algorithm and
NORA algorithm is the existence of the 0/1
constraints. Another difference is that IOSMTE al-
gorithm executes the optional parts of the schedu-
lable tasks after executes all mandatory parts of
the tasks.

On the other hand, in the overview of the algo-
rithm which is depicted in Fig. 1, the number of
iterations that the “For loop” is executed is bound-
ed by O(N), where N is total number of tasks in
the imprecise task system. Next, the number of
iterations that each procedure or function in the
“For loop” is executed is bounded by O(log N) be-
cause the number of schedulable tasks which the
“DetermineSchedulableTasks (i)” procedure de-
termines at some task T ; arrival can be bounded
by olgN. This value is denoted by “NbtPrevStep”
in Fig. 2. Hence, the comflexity of “Imprecise-
OnlineScheduling” in Fig. 2 is bounded by logN.
Eventually, the complexity of the proposed algo-
rithm in Fig. 1 becomes O(NlogN).

5. SIMULATION STUDY

In this section, the results of simulation are pre-
sented and analized. The aim of simulation is to
compare performances among the selection strate—
gics of optional parts. In order to compare the per—-

formances a series of experiments are performed.

5.1 Task Set Generation

For each experiment, a task set with three hun-
dred tasks, modeled as an M/M/Infinity queuing
system, in which the distribution characteristic of
task arrival time is Poisson; the service time is ex-
ponentially distributed is generated. The process—
ing time of mandatory part of each task is taken
uniformly from zero to (its deadline - its ready
time) * PiDistribution, where PiDistribution(p) is
fixed arbitrary from 0.2 to 0.9 for each experiment.
In this experiment, the deadline of each task is as—

sumed by the sum of its arrival time(;) and
processing time(p ;). The arrival rate over the

service rate, (defined as ARo(p)) is the average
number of tasks which can be scheduled in some
time interval of the system, where ARo(p) is fixed
arbitrary from 1 to 4 for each experiment. As ARo
(p) or PiDistribution(p) becomes larger, the load
of processor also becomes higher. If a generated
task set is not schedulable by the CheckOnLine-
Schedulability() function of Fig. 1, it is rejected
and regenerated until all mandatory tasks in the
generated imprecise on-line task system are
guaranteed. After the mandatory scheduling for
the generated task set, the optional scheduling is
performed. When the optional scheduling is per-
formed, the 0/1 constraints can be adopted. In
there, three different selection strategics are
considered. LOF(Longest Optional First) strategy
selects one task with the longest optional part
among the schedulable optional tasks. This strat-
egy is called as LOF_Scheduling. The second
strategy selects one task with the shortest optional

1748 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

part among the schedulable optional tasks. This
strategy is called as SOF_Scheduling. The third
strategy is the optional scheduling strategy of
IOSMTE algorithm. This strategy is called as
IOSMTE_Scheduling. To compare efficiencies
among the selection strategics, the following met-
rices are used.

5.2 The Guarantee Ratio of Optional Tasks

The total errors of generated task set can be de-
noted as percentage. The percentage of total errors
generated from LOF_Scheduling, SOF_Scheduling,
and IOSMTE_Scheduling can be computed as fol-
lows respectively;

LOF_ERR_RATIO =

(LOF_ERR/TOT_ERR)*100 1
SOF_ERR_RATIO =
(SOF_ERR/TOT_ERR)*100 (2)

IOSMTE_ ERR =
(IOSMTE_ERR/TOT_ERR) X100 (3)

In this, LOF_ERR, SOF_ERR and IOSMTE._
ERR denote the total error generated from LOF_
SOF_Scheduling, and IOSMTE_
Scheduling respectively.

Scheduling,

TOT_ERR means the sum of processing times
of all optional parts in a generated task set and this
value can be represented as follows;

TOT_ERR =Y o, n = the total number
k=1

of tasks in a generated task set (4)

LOF_ERR _RATIO, SOF_ERR_RATIO and
IOSMTE_ERR_RATIC denote the percentage of
total error generated from LOF_Scheduling,
SOF _Scheduling, and IOSMTE_Scheduling re-
spectively. Then, the guarantee ratios of optional
tasks in the LOF_Scheduling, SOF_Scheduling,
and IOSMTE_Scheduling can be computed as
follows;

G LOF =100 — LOF_ERR_RATIO (5
G_SOF = 100 — SOF_ERR_RATIO (6

G_IOSMTE = 100 — IOSMTE_ERK_RATIO
(7)

In this, G_LOF, G_SOF and G_IOSMTE denote
the guarantee ratios of optional tasks in the
LOF_Scheduling, SOF _Scheduling, and IOSMTE _
Scheduling respectively.

The first metric is the guarantee ratio of optional
tasks. Fig. 3 and Fig. 4 depict the distributions for
guarantee ratios of the optional tasks for p = 2,
p = 03and p = 3, p = 09 respectively. The x-axis
represents the index of each task set which con-
sists of 300 tasks and the y-axis its corresponding
guarantee ratio.

From the Fig.s, it can be easily noted that
IOSMTE_Scheduling outperforms LOF_Schedul-
ing or SOF_Scheduling. But, for the special case
of p = 1, the distributions of guarantee ratios gen—
erated from IOSMTE_Scheduling and LOF_
Scheduling are similar as shown in Fig. 5.

Guarantee Ratio of Optional Tasks
(AR0=2; PiDistribution=0.3)

80
80

o M e e L T
= . s e [YPRAR RS VR PRI et T .
g 80 3
© 50 [Z>t< AnnT e s AN r A A/ (AN B
i}
c 40
g
g 30
O 20 - ---LOF
- — SOF l

10 —— IOSMTE

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Index of Task Set

Fig. 3. Guarantee ratio of optional tasks.
(p=2, p=0.3)

Guarantee Ratio of Optional Tasks
(ARo=3, PiDistribution=0.9)
70

Ml SAVV Vo eV A e SN VY AW A VAN v

50

N s \ AR r)
A A TN PSPV e A S
Va 7 7

40

30

Guarantee Ratio

20 H ---toF
— —8OF
10 H ——IOSMTE

15 9 1317 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 80 93 97
Index of Task Set

Fig. 4. Guarantee ratio of optional tasks.
(p=3, p=0.9)

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks 1749

Guarantee Ratio of Optional Tasks
(ARo=1, PiDistribution=0.7)

A WG A AATOAAR A AR aaN
L= A" AcP A A AT
1 =Tust SN ANTTF NS RS AN N A

20 - - - .LOF
— — SOF
10 L

1 5 9 131721252933 37 414549 53 57 61 6560 73 77 81 85 8993 97
Index of Task Set

Guarantee Ratio

Fig. 5. Guarantee ratio of optional tasks.
(p=1, p=0.7)

5.3 The Distributions of Average Guarantee
Ratios of Optional Tasks

The second metric is the distributions of average
guarantee ratios of optional tasks depend on ARo
(p) and PiDistribution(p) values. To compare the
average guarantee ratios depend on ARo(p) and
PiDistribution{p) values among the three schedul-
ing strategics, 100 task sets in which a task set
consists of 300 imprecise tasks are generated. In
the generation of tasks, ARo(p) and PiDistribu-
tion(p) values are considered, where ARo(p) is
fixed arbitrary from 1 to 4 and PiDistribution(p)
is fixed arbitrary from 0.2 to 0.9. For each combi-
nation of ARo(p) and PiDistribution(p) values,

where 32(4x8) combinations are created, the aver-
age guarantee ratios of LOF_Scheduling, SOF_
Scheduling and IOSMTE_Scheduling can be com—
puted as follows;

AVG_G_LOF=TOT_G_LOF/100 8
AVG_G_SOF=TOT_G_SOF/100 9
AVG_G_IOSMTE=T0T_G_IOSMTE/100 (10)

In this, TOT_G_LOF, TOT_G_SOF and TOT_
G_IOSMTE mean the sum of guarantee ratios of
the generated 100 task sets in the LOF_Scheduling,
SOF_Scheduling and IOSMTE_Scheduling re-
spectively. AVG_G_LOF, AVG_G_SOF and AVG_
G _IOSMTE mean the average guarantee ratios of
the generated 100 task sets in the LOF_Scheduling,
SOF_Scheduling and IOSMTE_Scheduling re-
spectively. The following Table 1 represents the
average guarantee ratios depend on ARo(p) and
PiDistribution(p) values in the LOF_Scheduling,
SOF_Scheduling and IOSMTE_Scheduling.

In table 1, the numbers in bold-faced cells denote
the largest average guarantee ratios among the
three scheduling strategics. As we can see easily,
the IOSMTE_Scheduling strategy outperforms the
LOF_Scheduling and SOF_Scheduling strategics
for the most cases. For the special case of ARo(p)

Table 1. The average guarantee ratios depend on p and p values

Scheduling PiDistribution(p)
ARo(p)

Strategy 0.2 0.3 04 05 0.6 0.7 0.8 09
LOF 67.46 69.02 68.24 68.17 68.62 68.75 68.12 68.37
1 SOF 52.05 53.23 53.28 53.45 54.21 54.70 54.39 55.05
IOSMTE 67.51 69.00 68.31 68.74 69.55 69.94 69.29 69.96
LOF 67.24 66.75 66.47 64.71 62.12 58.66 54.31 49.82
2 SOF 52.81 53.10 52.75 52.48 5161 50.39 48.23 46.66
IOSMTE 75.55 75.13 75.17 74.06 72.34 70.01 66.07 61.35
LOF 63.89 63.06 61.53 58.81 954.94 50.69 46.96 4391
3 SOF 55.02 54.62 54.52 53.64 51.90 49.83 47.04 44.35
IOSMTE 78.57 78.26 77.39 75.73 72.51 67.96 62.42 57.45
LOF 62.23 61.32 59.12 55.30 51.94 4912 46.74 43.89
4 SO 56.42 56.05 55.08 54.22 51.93 49.25 46.89 44.51
IOSMTE 81.45 80.87 79.55 76.96 72.23 67.17 62.49 57.42

1750 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

= 1, where the average number of tasks which can
be scheduled in some time interval is 1, the differ-
ences of average guarantee ratios between
IOSMTE_Scheduling strategy and LOF_Schedul-
ing strategy are very small.

6. CONCLUSION

In the imprecise scheduling of real-time tasks,
it has been studied that LOF(Longest Optional
First) strategy has a good performance in the
scheduling of imprecise tasks with 0/1 constraints
for minimizing total errorl1,2].

On the other hand, in the on-line scheduling,
NORA algorithm can find a schedule with the min-
imum total error for the imprecise task system[4].
In NORA algorithm, EDF(Earliest Deadline First)
strategy is adopted in the scheduling of optional
tasks.

Therefore when NORA algorithm tries to finish
more optional tasks with earlier deadlines, the ex~
ecution of some mandatory tasks with later dead-
lines may be postponed. This is the main cause of
suboptimality in NORA algorithm. Furthermore,
NORA algorithm is not designed for the task sys-
tem with O/1 constraints. So, NORA algorithm may
not suitable for the task system with 0/1 con-
straints any more.

Thus, to improve the shortage of NORA algo-
rithm, in this paper, an on-line algorithm for mini~
mizing total error is proposed. This algorithm is
suitable for the imprecise on-line system with 0/1
constraints. Then, to evaluate the performance of
this algorithm, a series of experiments are done.
The aim of these experiments is to compare the
guarantee ratios of optional tasks among the pro-
posed algorithm and LOF(Longest Optional First)
strategy and SOF(Shortest Optional First)
strategy.

As a consequence of the performance compar-
ison among three selection strategics of optional
parts, it has been concluded that the proposed

IOSMTE algorithm outperforms LOF and SOF

strategics for the most cases.

REFERENCES

[1] André M. van Tilborg, and Gary M. Koob,
Foundations of Real-Time Computing Sched-
uling and Resource Management, Kiluwer
Academic Publishers, Boston/Dordrecht/
London, 1991.

[2] K. H. Song, K. H. Choi, S. K. Park, D. K. Choi,
and K. O. Yun, “A Heuristic Scheduling Al-
gorithm for Reducing the Total Error of an
Imprecise Multiprocessor System with 0/1
Constraint,” Journal of Electrical Engineer—
ing and Information Science, Vol.2, No.b6, pp.
1-6, 1997.

[3]1 C. H. Lee, W. Ryu, K. H. Song, K. H. Choi,
G. H. Jung, and S. K. Park, “On-line
Scheduling Algorithms for Reducing the
Largest Weighted Error Incurred by Impre-
cise Tasks,” Proceedings of Fifth Interna-
tional Conference on Real-Time Computing
Systems and Applications, pp. 137-144, 1998.

[4] Wei-Kuan Shih and Jane W. S. Liu, “On-Line
Scheduling of Imprecise Computations to
Minimize Error,” SIAM J. COMPUT, Vol.25,
No.5, pp. 1105-1121, 1996.

[5] Sanjoy K. Baruah and Mary Ellen Hickey,
“Competitive On-Line Scheduling of Impre—
cise Computations,” IEEE Transactions on
Computers, Vol.47, No.9, pp. 1027-1032, 1998.

[6] Gi-Hyeon Song, “Online Schedulability Check
Algorithm for Imprecise Real-time Tasks,”
Journal of the Korea Computer Industry
Education Society, Vol.3, No.9, pp. 1167-1176,
2002.

[71 Gi-Hyeon Song, “An On-line Algorithm to
Search Minimum Total Error for Imprecise
Real-time Tasks with 0/1 Constraint,” Jour-
nal of Korea Multimedia Society, Vol.8, No.
12, pp. 1589-1596, 2005.

(8]

[9]

[10]

[11]

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks 1751

J. Hong, X. Tan, and D. Towsley, “A Perfor-
mance Analysis of Minimum Laxity and
Earliest Deadline Scheduling in a Real-Time
System,” IEEE Transactions on Computers,
Vol.38, No.12, pp. 1736-1744, 1989.
Gi-Hyeon Song, “An Efficient Algorithm to
Minimize Total Error of the Imprecise Real
Time Tasks with 0/1 Constraint,” Journal of
the Korea Computer Industry FEducation
Society, Vol.7, No4, pp. 309-319, 2006.
Wei-Kuan Shih and Jane W. S. Liu, “Algor-
ithms for Scheduling Imprecise Computations
with Timing Constraints to Minimize
Maximum Error,” IEEE Transactions on
Computers, Vol.44, No.3, pp. 466-471, 1995.
Wei-Kuan Shih, Che-Rung Lee, and
Ching-Hui Tang, “A Fast Algorithm for
Scheduling Imprecise Computations with
Timing Constraints to Minimize Weighted
Error,” IEEE, pp. 305-310, 2000.

[12] Kun—Ming Yu, “Algorithms for Imprecise
Tasks With 0/1-Constraints,” Journal of
Information Science and Engineering, Vol.17,
pp. 73-83, 2001.

{131 W. K. Shih, J. W. S. Liy, and J. Y. Chung,
“Algorithms for scheduling imprecise compu-
tations with timing constraints,” SIAM J.
COMPUT, Vol.20, pp. 537-552, 1991.

Gi-Hyeon Song

Received the B.S. and M.S.
degrees in computer science and
statistics from Chungnam Uni-
versity in 1985 and 1987 re-
spectively and his Ph.D. from
Ajou University in 1999. He is
an associate professor in MIS
department at Daejeon Health Sciences College since
1990. His research interests include real-time schedul—
ing and web database.

