• Title/Summary/Keyword: Uninterruptible Power System

Search Result 155, Processing Time 0.023 seconds

A Study of Smart Uninterruptible Power Supply Capable High Efficiency Drive (고효율 운전이 가능한 지능형 무정전 전원장치에 관한 연구)

  • Eom, Tae-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.61-66
    • /
    • 2013
  • In this paper, a control scheme with the capability of high efficiency, which is realized by predicting the conditions of a load power and an input power, is proposed for the uninterruptible power supply (UPS). Generally, on-line UPS system supplies a constant voltage and a constant frequency (CVCF). However, the efficiency of the On-line UPS system can be reduced due to the switching losses of semiconductor devices during the power conversion. The these losses are improved by the proposed smart UPS with the high efficiency drive system, which is realized by analysing and predicting the conditions of a load power and an input power.

Construction of Uninterruptible Power System by Reliable Incoming Dual-Power Line (상용2회선 수전방식을 적용한 무정전 수변전설비 구축방안 검토·제안연구)

  • Choi, Jin-Sung;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.64-70
    • /
    • 2010
  • High capacity UPS and emergency generators are commonly employed at facilities where power interruption is not allowed. Nowadays, combinations of existing commercial incoming power and an emergency generator or combination of multiple generators and CTTS(Closed Transition Transfer Switch) is adopted sometimes for more reliable power supply. In this paper, application of CTTS and STS(Static Transfer Switch) to dual-power line is suggested for highly reliable uninterruptible power. By realizing such a system, construction of incoming power facilities, installation of emergency generator and large capacity UPS can be omitted, through which saving of the installation space and corresponding capital investment can be expected.

Construction Of Uninterruptible Power System by Reliable Incoming Power Method (신뢰도 높은 수전방식에 의한 무(無)정전 전원설비 구축방안)

  • Choi, Jin-Sung;Lee, Sang-Joong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.367-371
    • /
    • 2007
  • Large capacity UPS and emergency generators are being installed and operated at the specific target of important electric facilities that need uninterruptible power supply by the method of countermeasure against power failure for the less reliable incoming power method. Recently, CTTS (Closed Transition Transfer Switch) is being used as uninterruptible power transfer switch at the Common sources of electricity, generator and multiple generators. In this paper, construction plans for uninterruptible power supply system has been suggested in which CTTS has been applied to the secondary of incoming power generator for reliable common dual system method. By briefing the construction of incoming power facilities, large capacity UPS, emergency generator installation space and investment saving effects can be achieved.

  • PDF

A study on the Noise Reduction of Uninterruptible Power Supply using Random PWM Method (Random PWM 기법을 이용한 무정전 전원장치의 노이즈 저감에 관한 연구)

  • Eom, Tae-Wook;Lee, Byung-Soon;Lee, Jae-Hak
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.100-105
    • /
    • 2014
  • In this paper, Uninterruptible Power Supply(UPS) Inverter system using Carrier Frequency Modulated PWM (CFM-PWM) is proposed to reduced harmonics and electromagnetic noise. Power conversion of UPS system is executed by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI which deteriorate the reliability of the UPS system. This Problems improved by Random PWM switching method. The simulation results of the proposed system was compared with the system using conventional method using Matlab/Simulink. The results show that the output voltage and current harmonics of the proposed UPS system significantly decreased and spread into wide band area by the proposed Carrier Frequency Modulated PWM(CFM-PWM) method based on the Space Vector Modulation.

Single-phase Uninterruptible Power Supply employing Superconducting Magnet Energy Storage Unit

  • Kang, Feel-Soon
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.362-368
    • /
    • 2007
  • A single-phase uninterruptible power supply system equipped with a superconducting magnet energy storage unit is proposed to achieve a simple circuit configuration and higher system reliability. It reduces a number of switching devices by applying a common-arm scheme. Removing some switches or substituting passive elements for active switches can increase the sophistication and reduces degree of freedom in control strategy. However, high-performance DSP controller can execute the complicated control task with no additional cost. Operational principles to normal, stored-energy, and bypass mode are discussed in detail. The validity of the proposed system is verified by experimental results.

A Study on the Uninterruptible Power Supply on the Open Phase of Three-phase Motor (3상 전동기 결상시 무정전 전원공급장치에 대한 연구)

  • Shin, Hyr-Young;Choi, Hong-Kyoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1317-1320
    • /
    • 2014
  • In case of using three-phase induction motor in three-phase power system, if he deficiency happens in phase among three-phase, the motor will drive in an open phase state. As to the motor, the continuing operation is possible then, but the phenomenon that the power supply stops happening by the result of the overload electricity order on the healthy phase of two phases with a damage and activating the circuit breaker. Consequently, in order to overcome this problem in treatise accordingly. I propose an uninterruptible power supply which is able to prevent that the over current on the health phase through the restoration that in case happening open phase on the power line when driving the motor. Also, it is possible to supply power consecutively without interruption of electric power and we proved the performance and reliability through an experiment.

Series-Parallel Compensated Uninterruptible Power Supply (직병렬 보상형 무정전 전원장치에 관한연구)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.300-302
    • /
    • 1996
  • In this paper a new series-parallel compensated uninterruptible power supply is proposed. Its series compensator shapes input current to sinusoid. The power handled by series compensator is only a quarter of ratings. And parallel compensator delivers sinusoidal voltage to nonlinear load. The parallel compensator is backedup with battery. This system has capabilities of power line conditioner and backup power with reduced size.

  • PDF

Output Phase Synchronization Method of Inverter for Parallel Operation of Uninterruptible Power System (무정전전원장치 병렬운전을 위한 인버터의 출력 위상 동기화 방법)

  • Kim, Heui-Joo;Park, Jong-Myeon;Oh, Se-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • In this paper, we propose the bus/bypass synchronization phase lock loop (B-Sync PLL) method using each phase voltage controller of a parallel UPS inverter. The B-Sync PLL included in each phase voltage control system of parallel UPS inverters has the transient response and the phase synchronization error at grid normal or blackout. The validity of this method is verified by simulation and experiment. As a result, the parallel UPS inverters using the proposed method confirmed that the output phase was continuously synchronized when a grid blackout, improving the transient response characteristics for stable load power supply and equal load sharing.

Hybrid UPS with Energy Storage System Function (ESS 기능을 갖는 하이브리드 UPS)

  • Lim, Seung-Beom;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.266-275
    • /
    • 2014
  • This paper proposes the hybrid UPS(Uninterruptible Power Supply) with ESS(Energy Storage System) function. The proposed hybrid UPS is operating in four states, which are normal state, battery state, ESS state, and bypass state. In case of peak load time or power shortage, the system is operating in ESS state in which the stored energy of the battery is used to manage the power effectively. The validity of proposed system are verified by simulations and experiments.

The Design and Simulation of a Fuzzy Logic Sliding Mode Controller (FLSMC) and Application to an Uninterruptible Power System Control

  • Phakamach, Phongsak;Akkaraphong, Chumphol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.389-394
    • /
    • 2004
  • A Fuzzy Logic Sliding Mode Control or FLSMC for the uninterruptible power system (UPS) is presented, which is tracking a sinusoidal ac voltage with specified frequency and amplitude. The FLSMC algorithm combines feedforward strategy with the Variable Structure Control (VSC) or Sliding Mode Control (SMC) and fuzzy logic control. The control function is derived to guarantee the existence of a sliding mode. FLSMC has an advantage that the stability of FLSMC can be proved easily in terms of VSC. Furthermore, the rules of the proposed FLSMC are independent of the number of system state variables because the input of the suggested controller is fuzzy quantity sliding surface value. Hence the rules of the proposed FLSMC can be reduced. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances. It has the small overshoot in the transient and the smaller chattering in the steady state than the conventional VSC. Moreover, its can achieve the requirements of robustness and can supply a high-quality voltage power source in the presence of plant parameter variations, external load disturbances and nonlinear dynamic interactions.

  • PDF