• Title/Summary/Keyword: Uniform quality

Search Result 833, Processing Time 0.028 seconds

Simulation Study of Injection-Molded Light Guide Plates for Improving Luminance Uniformity Based on the Measured Replication Quality of Micro-Patterns for LED TV Backlight

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.159-164
    • /
    • 2015
  • In the injection-molded light guide plate the replication quality, i.e. the reproduction accuracy, of micro-patterns should be high and uniform over the entire surface area. However technical difficulty in meeting the necessary replication quality arises as the plate size becomes large for TV applications. We propose a simulation technique to optimize the distribution of micro-patterns on a 55-inch injection molded light guide plate considering non-ideal replication quality of micro-patterns. The luminance uniformity could be improved by more than 16% by optimizing the pattern distribution in spite of the same replication quality.

Inverse quantization of DCT coefficients using Laplacian pdf (Laplacian pdf를 적용한 DCT 계수의 역양자화)

  • 강소연;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.857-864
    • /
    • 2004
  • Many image compression standards such as JPEG, MPEG or H.263 are based on the discrete cosine transform (DCT) and quantization method. Quantization error. is the major source of image quality degradation. The current dequantization method assumes the uniform distribution of the DCT coefficients. Therefore the dequantization value is the center of each quantization interval. However DCT coefficients are regarded to follow Laplacian probability density function (pdf). The center value of each interval is not optimal in reducing squared error. We use mean of the quantization interval assuming Laplacian pdf, and show the effect of correction on image quality. Also, we compare existing quantization error to corrected quantization error in closed form. The effect of PSNR improvements due to the compensation to the real image is in the range of 0.2 ∼0.4 ㏈. The maximum correction value is 1.66 ㏈.

Elimination of the effect of strain gradient from concrete compressive strength test results

  • Tabsh, Sami W.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.375-388
    • /
    • 2006
  • Poor strength test results are sometimes not an indication of low concrete quality, but rather inferior testing quality. In a compression test, the strain distribution over the ends of the specimen is a critical factor for the test results. Non-uniform straining of a concrete specimen leads to locally different compressive stresses on the cross-section, and eventual premature breaking of the specimen. Its effect on a specimen can be quantified by comparing the compressive strength results of two specimens, one subjected to uniform strain and another to a specified strain gradient. This can be done with the help of a function that relates two parameters, the strain ratio and the test efficiency. Such a function depends on the concrete strength and cross-sectional shape of the specimen. In this study, theoretical relationships between the strain ratio and test efficiency are developed using a concrete stress-strain model. The results show that for the same strain ratio, the test efficiency is larger for normal strength concrete than for high strength concrete. Further, the effect of the strain gradient on the test result depends on the cross-sectional shape of the specimen. Implementation of the results is demonstrated with the aid of two examples.

On a Multiband Nonuniform Samping Technique with a Gaussian Noise Codebook for Speech Coding (가우시안 코드북을 갖는 다중대역 비균일 음성 표본화법)

  • Chung, Hyung-Goue;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.110-114
    • /
    • 1997
  • When applying the nonuniform sampling to noisy speech signal, the required data rate increases to be comparable to or more than that by uniform sampling such as PCM. To solve this problem, we have proposed the waveform coding method, multiband nonuniform waveform coding(MNWC), applying the nonuniform sampling to band-separated speech signal[7]. However, the speech quality is deteriorated when it is compared to the uniform sampling method, since the high band is simply modeled as a Gaussian noise with average level. In this paper, as a good method to overcome this drawback, the high band is modeled as one of 16 codewords having different center frequencies. By doing this, with maintaining high speech quality as MOS score of average 3.16, the proposed method achieves 1.5 times higher compression ratio than that of the conventional nonuniform sampling method(CNSM).

  • PDF

Effect of Up-and-Down Torch Oscillation for Providing Uniform Heat Input along the Sidewall of Gap on Ultra Narrow Gap Welding (울트라 내로우 갭 용접에서 갭 내 고른 아크입열 분포를 위한 상ㆍ하 토치요동 효과)

  • 김두영;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.85-91
    • /
    • 2003
  • Narrow gap welding has many advantages over conventional V-grooved butt welding such as high productivity, small deformation and improved mechanical property of joints. With narrower groove gap, less arc heat input is expected will all the other advantages of narrow gap welding. The main defects of narrow gap welding include the lack of root fusion, convex bead surface and irregular surface, all of which have negative effects on the next welding pass. This paper suggests an up-and-down torch oscillation for ultra narrow gap welding with gap size of 5mm and investigates the proper welding conditions to fulfill the reliable and high welding quality. First, GMA welding model was suggested for ultra narrow gap welding system with Halmoy's model referenced for wire melting modeling. And the arc length in ultra narrow gap was defined. Secondly, based on the experimental results of up-and-down torch oscillation welding, phase shift of current and wire extension length were simulated for varying oscillation frequency to show that weld the bead shape in ultra narrow gap welding can be predicted. As the result, it was confirmed that reliable weld quality in ultra narrow gap welding can be achieved with up-and-down torch oscillation above 15Hz due to its ability to provide uniform heat input along the sidewall of gap.

Experimental Study on In-Tube Condensation Heat Transfer Characteristics of Helically Coiled Spiral Tubes (코일형 나선 전열관의 내부 응축열전달 특성에 관한 실험 적 연구)

  • Park, Jong-Un;Gwon, Yeong-Cheol;Han, Gyu-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1676-1683
    • /
    • 2001
  • An experimental study on condensation heat transfer characteristics of helically coiled spiral tubes was performed. The refrigerant is R-113. A refrigerant loop was established to measure the condensation heat transfer coefficients. Experiments were carried out uniform heat flux of 15 kw/m$^2$, refrigerant quality of 0.1∼0.9, curvature ratio of 0.016, 0.025 and 0.045. The curvature of a coil was defined as the ratio of the inside diameter of the tube to the diameter of the bending circle. To compare the condensation heat transfer coefficients of coiled spiral tubes, the previous results on coiled plain tubes and straight plain tubes were used. The results shows that the condensation heat transfer coefficients of coiled spiral tubes largely increase, as increasing Re and quality, compared to those of coiled plain tubes and straight plain tubes. As increasing degree of subcooling, however, the condensation heat transfer coefficients on coiled spiral tubes decrease. It is found that the heat transfer enhancement is more better than coiled plain tubes and straight plain tubes, as increasing curvature ratio.

Satisfaction and Repurchase Intention of Individual Purchase and Co-Purchase School Uniform (교복 공동구매와 개별구매 만족도 및 재구매의도)

  • Jang, Youn-Jung;Joung, Soon-Hee;Ahn, Chang-Hee
    • Journal of Families and Better Life
    • /
    • v.26 no.2
    • /
    • pp.143-154
    • /
    • 2008
  • This study intended to provide information which gives a way for students and their parents to be satisfied with student costume purchase by showing differences between their satisfactions and repurchasing intention according to school uniform purchase type. Total 280 questionnaires were distributed to the first year students at a private middle school in Seoul and 133 of copurchase cases and 120 individual purchase cases were collected and analyzed. The comparing results between parent satisfaction and repurchasing intention were summarized as follows. First, parent satisfaction of individual purchase and of co-purchase had been evaluated. As a result of the analysis of satisfaction by the five factors, individual parent buyers had higher satisfaction in brand, quality, design, and service except price. The largest different factor between both customers was quality satisfaction. Secondly, the individual buyers showed higher repurchasing intention than co-purchasing buyers. This result meant that individual purchasing group showed higher satisfaction. Lastly, when the relationship between satisfaction and repurchasing intention of each buyer group was examined, the level of satisfaction was positively associated with the repurchase intention of co-purchase.

Enhancement Method of Depth Accuracy in DIBR-Based Multiview Image Generation (다시점 영상 생성을 위한 DIBR 기반의 깊이 정확도 향상 방법)

  • Kim, Minyoung;Cho, Yongjoo;Park, Kyoung Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.237-246
    • /
    • 2016
  • DIBR (Depth Image Based Rendering) is a multimedia technology that generates the virtual multi-view images using a color image and a depth image, and it is used for creating glasses-less 3-dimensional display contents. This research describes the effect of depth accuracy about the objective quality of DIBR-based multi-view images. It first evaluated the minimum depth quantization bit that enables the minimum distortion so that people cannot recognize the quality degradation. It then presented the comparative analysis of non-uniform domain-division quantization versus regular linear quantization to find out how effectively express the accuracy of the depth information in same quantization levels according to scene properties.

Effect of Process Variables on the Flash Butt Welding of High Strength Steel

  • Kim, Y.S.;Kang, M.J.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.24-28
    • /
    • 2003
  • This study was aimed to evaluate the quality of flash welded joints and optimize the welding process for flash butt welding of 780MPa grade high strength steel. And then the relationship between the welding process variables and the joint quality would be established. The effect of process variables between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with Ceq of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non­uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

Real-time Acquisition of Three Dimensional NMR Spectra by Non-uniform Sampling and Maximum Entropy Processing

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2017-2022
    • /
    • 2008
  • Of the experiments to shorten NMR measuring time by sparse sampling, non-uniform sampling (NUS) is advantageous. NUS miminizes systematic errors which arise due to the lack of samplings by randomization. In this study, I report the real-time acquisition of 3D NMR data using NUS and maximum-entropy (MaxEnt) data processing. The real-time acquisition combined with NUS can reduce NMR measuring time much more. Compared with multidimensional decomposition (MDD) method, which was originally suggested by Jaravine and Orekhov (JACS 2006, 13421-13426), MaxEnt is faster at least several times and more suitable for the realtime acquisition. The designed sampling schedule of current study makes all the spectra during acquisition have the comparable resulting resolutions by MaxEnt. Therefore, one can judge the quality of spectra easily by examining the intensities of peaks. I report two cases of 3D experiments as examples with the simulated subdataset from experimental data. In both cases, the spectra having good qualitie for data analysis could be obtained only with 3% of original data. Its corresponding NMR measuring time was 8 minutes for 3D HNCO of ubiquitin.