• 제목/요약/키워드: Uniform porosity

검색결과 163건 처리시간 0.022초

슬러리 코팅 공정을 이용한 Fe 폼의 제조에 대한 연구 (Fabrication of Fe Foam using Slurry Coating Process)

  • 윤중열;박다희;양상선;왕제필
    • 자원리싸이클링
    • /
    • 제26권6호
    • /
    • pp.97-101
    • /
    • 2017
  • 메탈폼은 매우 많은 기공을 포함하는 세포상 구조를 갖는 고체금속을 일컫는다. 특히 관통 기공 같은 개기공들은 고온용 필터 및 촉매 지지체 등으로 산업적으로 많이 사용되고 있다. 본 연구에서는 슬러리 코팅공정으로 90% 이상의 기공율과 2 mm 이상의 기공크기를 갖는 Fe 폼을 제조하였다. 이때 Fe 분말과 $Fe_2O_3$ 분말의 혼합비를 달리하여 기공율과 기공크기를 제어하였다. 이를 위해 우선 분말, 증류수 및 폴리비닐알콜(PVA)를 균일하게 혼합하여 슬러리를 제조하였다. $Fe_2O_3$ 분말의 혼합 비율이 증가할수록 PU 폼에 코팅된 슬러리의 양이 증가한 반면 Fe 폼의 수축 및 기공율은 각각 감소하였다.

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets

  • Zhou, Changlin;Zhang, Zhongxian;Zhang, Ji;Fang, Yuan;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.215-226
    • /
    • 2020
  • The aim of this study is to investigate free vibration of functionally graded porous nanocomposite rectangular plates where the internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The GPL-reinforced plate is modeled using a semi-analytic approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of motion. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. New results reveal the importance of porosity coefficient, porosity distribution, graphene platelets (GPLs) distribution, geometrical and boundary conditions on vibration behavior of porous nanocomposite plates. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

단결정 YBCO 벌크 초전도체 제조에 대한 액상침투법과 고전적 용융공정의 비교연구 (Comparative Study on the Fabrication of Single Grain YBCO Bulk Superconductors using Liquid Infiltration and Conventional Melt Growth Processes)

  • 아시프 마흐무드;전병혁;김찬중
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.42-46
    • /
    • 2009
  • With an aim of comparison, single grain Y-Ba-Cu-O (YBCO) bulk superconductors were fabricated using a liquid infiltration growth (LIG) process and a conventional melt growth (MTG) process with top seeding. The MTG process uses an $YBa_2Cu_3O_{7-x}$(Y123) powder as a precursor, while the LIG process uses $Y_2BaCuO_5(Y211)/Ba_3Cu_5O_8(Y035)$ pre-forms. The growth of a single Y123 domain on the top seed was successful in the both processes. Different feature between the two processes is the interior microstructure regarding the critical current density ($J_c$). The LIG-processed YBCO sample showed a lower porosity, more uniform distribution of Y211 particles and the enhanced Y211 refinement compared to the conventional MTG process. The $J_c$ improvement in the LIG process is attributed to the dispersion of finer Y211 particles as well as lower porosity within the Y123 superconducting matrix.

  • PDF

Acoustic and Elastic Properties of the Southeastern Yellow Sea Mud, Korea

  • Kim, Gil-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권2E호
    • /
    • pp.49-55
    • /
    • 2006
  • Compressional wave velocity (Vp), shear wave velocity (Vs), elastic and physical properties, and electrical resistivity for two core sediments obtained from Southeastern Yellow Sea Mud (SEYSM) were measured and computed. The sediments consist of homogeneous mud (mostly silt and clay) with shells and shell fragments. As a result, the mean grain size is uniform ($7.5-8.5{\Phi}$ throughout the core sediments. However, physical properties such as wet bulk density and porosity show slightly increasing and decreasing patterns with depth, compared to the mean grain size. The compressional (about 1475 m/s in average) and shear wave (about 60 m/s in average) velocities with depth accurately reflect the pattern of wet bulk density and porosity. Electrical resistivity is more closely correlated with compressional wave velocity than physical properties. The computed Vp/Vs and Poisson's ratios are relatively higher (more than 10) and lower (approximately 0.002) than Hamilton's (1979) data, respectively, suggesting the typical characteristics of soft and fully water-saturated marine sediments. Thus, the Vp/Vs ratio in soft and unconsolidated sediments is not likely sufficient to examine lithology and sediment properties. Relationships between the elastic constant and physical properties are correlated well. The elastic constants (Poisson's ratio, bulk modulus, shear modulus) given in this paper can be used to characterize soft marine sediments saturated with seawater.

볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석 (Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling)

  • 김성준;최재영;신현호
    • 품질경영학회지
    • /
    • 제42권4호
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

균염을 가지는 최적스핀들 형상에 관한 수치해석적 연구 (A Computational Study for an Optimum Spindle Shape with Uniform Yarn Dyeing)

  • 강민성;최종윤;김희동;김용대;전두환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.456-459
    • /
    • 2008
  • In the field of yarn dyeing, the most generally employed method is a type of package dyeing which uses a package cheesesstacked on a spindle made of a perforated tube. Spindles up to now, have been designed without considering the characteristics of dyeing liquid, focusing only on the geometric configuration which cause many problems such as lack of level dyeing. To improve the level dyeing and find the appropriate spindle configuration for the most effective dyeing process, this study examines the spindle flow-field in detail, using a computational method. Flow characteristics inside the spindle have been investigated with varying in porosity, porous diameter and the velocity of the flow. The results show that the total pressure of the flow through the spindle is used to overcome body force. The characteristics of the flow from the porous spindle could also be observed. Based on the results from this study, an effective spindle configuration for level-dyeing has been proposed.

  • PDF

폴리머 스펀지법을 이용한 다공성 수산화아파타이트 지지체 제조 시 MgO 첨가량에 따른 영향 (The Effect of MgO Content on the Preparation of Porous Hydroxyapaite Scaffolds by Polymer Sponge Method)

  • 진형호;민상호;이원기;박홍채;윤석영
    • 한국재료학회지
    • /
    • 제16권11호
    • /
    • pp.715-718
    • /
    • 2006
  • Porous hydroxyapatite (HAp) scaffolds have been prepared by using the slurry including HAp and magnesia based on the replication of polymer sponge substrate. The influence of MgO content in slurry on the pore morphology and size, density, porosity, and mechanical strength of porous HAp scaffolds was investigated. The obtained scaffolds with average pore sizes ranging 150 to 300 mm had open, relatively uniform, and interconnected porous structure regardless of MgO content. As the MgO content increased, the pore network frame of scaffolds became to be relatively stronger, even though the pore size was not much changed. The compressive strength of the scaffolds increased rapidly with the increase of MgO content because of increasing the pore wall thickness and density of the scaffolds. As a result, the porosity, density, and compressive strength of the porous HAp scaffolds prepared by the sponge method were significantly affected by the addition of MgO.