• Title/Summary/Keyword: Uniform flow distribution

Search Result 449, Processing Time 0.021 seconds

Flow Analysis of the Tube Type Marine Auto-Backwashing Fuel Oil Filter (튜브형 박용 자동역세 연료유 필터 내부의 유동해석)

  • Yang, Jang-Sik;Kim, Bong-Hwan;Park, Young-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.578-587
    • /
    • 2009
  • In this paper, the characteristics of incompressible flow in a tube type marine fuel oil filter have been investigated. Fluent program has been used to obtain the solutions for the problems of three-dimensional, turbulent fuel oil flow in a filtering system. The inlet flow field is assumed to be uniform. The velocity and pressure distributions were obtained using Darcy's law. The increase of inlet velocity for cleaning fuel oil may cause some problems like vibration of the filter element. It was also required to consider the distribution of cleaning velocity because the worst distribution of cleaning velocity may cause the local insufficient cleaning effect and furthermore the effective filtration area can be reduced. The simulated results show that the computer code can be successfully applied for simulation of the complex base oil flow through the porous media. This paper could be applied to the design of auto-backwashing filtering system as design factor.

Plating of Permalloy Using Flow Cell

  • Jeon, S.H.;Ahn, J.H.;Kang, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.423-427
    • /
    • 1999
  • Electroplating of 80%Ni permalloy thin plate for magnetic core materials. was studied The convected flow of electrolyte was used for stirring methode. The current density could be increased up to 250mA/$\textrm{cm}^2$ by flow cell. The composition of electroplated layer with vespect to current density and flow rate was investigated and experimental equation to predict the composition was made. How cell yielded more uniform thickness distribution than paddle cell did. The composition distribution was also studied. The thickness was the most important factor to the permeability. The permeability of 5$\mu\textrm{m}$plated permalloy was over 2000 at 1 MHz.

  • PDF

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

Heat Transfer Analysis of Friction Welding of A2024 to SM45C (A2024 와 SM45C 마찰용접의 열전달 해석)

  • 이상윤;윤병수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • The hear transfer mechanism initiating the friction welding is examined and a transient three dimensional heat conduc-tion model for the welding of two dissimilar cylindrical metal bars is investigated. The cylindrical metal bars are made of materials made of A2024 and SM 45C. Numerical simulations of heat flow are performed using the finite volume method. Respectively. Commercial FLUENT code is used in the heat flow simulation and maximum temperature and distribution of temperature are calculated. Temperature of friction welded joining face is compared with the temperature distribution measured by experiment and numerical simulation. The maximum temperature of friction welded joining face is lower than melting point of A2024-T6 aluminum alloy using insert metal. The temperature distribution of friction welded join- ing face with insert metal is more uniform than that of without inset metal.

  • PDF

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

An Experimental Study on the Behavior of Twin-Spray with Flow Interaction in a Condensable Environment (주위기체내에서의 두 액체분무간의 유동간섭현상에 대한 정상적 고찰)

  • 이상룡;정태식;한기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.326-334
    • /
    • 1986
  • The effects of flow interaction between adjacent sprays in twin-spray system on the spatial distribution of injected liquid (water) and drop size distribution in condensable (steam) environment were carefully observed through experiments. The spatial distribution of injected liquid in twin-spray system appears to be more uniform than the simple superposition of the spatial distributions of liquid obtained from each individual spray. Drop size distribution was obtained by using the immersion sampling technique. It was found that, in the twin-spray, the larger numbers of small drops are collected throughout the spraying region due to the increase of entrainment velocity of ambient steam compared with the case of simple superposition of each individual spray. Moreover, in the overlapped portion of the twin-spray, the drop size distribution was changed also due to the collision between large drops. As a result, the behavior of twin-spray system (and eventually multiple-spray system) can not be predicted precisely by simple superposition of the behaviors of each constituting spray. Hence, for the design of multiple spray system, the effect of flow interaction between sprays should be taken into account seriously.

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

Numerical Analysis of Flow Distribution in the Scaled-down APR+ Using Two-Equation Turbulence Models (2방정식 난류모델을 이용한 축소 APR+ 내부 유동분포 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.220-227
    • /
    • 2015
  • Complex thermal hydraulic characteristics exist inside the reactor because the reactor internals consist of fuel assembly, internal structures and so on. In this study, to examine the effect of Reynolds-Averaged Navier-Stokes (RANS)-based two-equation turbulence models in the analysis of flow distribution inside a 1/5 scaled-down APR+, simulation was performed using the commercial computational fluid dynamics software, ANSYS CFX R.13 and the predicted results were compared with the measured data. It was concluded that reactor internal flow pattern was locally different depending on the turbulence models. In addition, the prediction accuracy of k-${\varepsilon}$ model was superior to that of other two-equation turbulence models and this model predicted the relatively uniform distribution of core inlet flow rate.

Experimental Investigation on Air-Distribution in a Water-Flowing through a G1-Rod Bundle with Helical Spacers

  • Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 1978
  • The object of this study was to obtain data on air-distributions in two-phase up flow in vertical rod-bundle test-section. The test-section in this study was a hexagonal shaped 61-rod bundle where each rod was wrapped with helical spacers. The variables were flow rates of air and water and air inlet positions. Experimental data were obtained at the outlet of the test-section. The experiments were performed in two parts. Firstly, data were taken at increasing flow rates of air keeping water flow rates constant, and secondly, at simultaneous increase of air and water flow rates. At each flow condition, air supply position could be changed to 4 different positions. Data obtained by electrical void-needle technique were analyed and are presented here in graphical forms for comparison. The results of this study demonstrate qualitatively that air-distribution tends to be more uniform as water flow rates are increased. The air supply positions have noticeable effects on the pattern of air-distribution.

  • PDF

A Numerical Study on the Design of a Central Flow Distributor Device Stabilizing Flow Uniformity in a vehicular fuel cell stack (차량용 연료전지 스택의 안정적 반응 가스 공급을 위한 중앙 유동 분배기 형상 설계에 관한 수치적 연구)

  • Jung, Hye-Mi;Um, Suk-Kee;Jeong, Hui-Seok;Lee, Seong-Ho;Seo, Jeong-Do;Son, Yeong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.554-557
    • /
    • 2008
  • In this study, two types of central flow distributor designs are presented and compared to obtain the optimal compact design which has the least flow resistance and the uniform flow distribution in a vehicular fuel cell stack. For effective and reliable prediction on the thermo-flow characteristics of the reactants flow over the entire fuel cell stack domain, open channel flow in the bipolar plates of the power generating cells were simulated by applying a simplified flow resistance model with an empirical porous concept. A number of case studies were performed to figure out an optimal configuration of a central flow distributor device in terms of the time-dependent thermo-flow behavior and load-dependent flow distribution. The results showed that the stable and load-independent thermo-flow uniformity is very design specific, which is closely associated with the design of central manifolding devices in order to achieve the enhanced volumetric power density and the reliable long-lasting operating of fuel cells.

  • PDF