• 제목/요약/키워드: Uniform Stress

검색결과 706건 처리시간 0.024초

단일방향 복합재료의 공유면에 존재하는 계면 모서리균열의 점탄성 해석 (Viscoelastic Analysis of Stress Intensity Factor for Interface Edge Crack in a Unidirectional Liminate)

  • 이상순;김범식
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.129-134
    • /
    • 1997
  • 탄성 섬유와 점탄성 기지로 구성된 2차원의 단일방향 복합재료에서 발생하는 계면 응력 특이성을 시간영역 경계요소법을 사용하여 조사하였다. 먼저, 아무런 균열없이 섬유와 기지가 완전하게 결합되어 있는 단일방향 복합재료에 횡방향 인장변형이 작용할때 자유경계면 부근에 나타나는 계면 특이응력들을 조사하였다. 그러한 응력들은 섬유와 기지의 결합분리나 계면 모서리 균열을 야기 시킬수 있다. 다음에, 여러가지 크기의 모서리 균열들에 대한 응력확대계수가 계산되었다.

  • PDF

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

차륜과 철로의 연성진동에 관한 연구 (A Study on the Coupled Vibration of Train wheel and Rail Dynamic Chaacteristics of Train Wheel with the Stepped Thickness)

  • 김광식;박문태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.142-144
    • /
    • 1986
  • The research was conducted for the purpose of examining the dynamic characteristics of train wheel at the running state and preventing the vibrations of the high speed railway. The stress at the boundary surface of web and rim, .sigma./sub c/, was analyzed in consideration of the uniform In-plane compressive stress depending on the conditions of rolling and the rotation of train wheel. Then the equation of transverse vibration of the annular plate with the stepped thickness was analyzed by Rayleigh-Ritz's method.

  • PDF

능동 섬유 복합재의 직접적 수치 모사 (Direct Numerical Simulation of Active Fiber Composite)

  • 백승훈;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.5-9
    • /
    • 2003
  • Stress and deflection of Active Fiber Composite(AFC) embedded and/or attached composite structures are numerically investigated at the constituent level by the Direct Numerical Simulation(DNS). The DNS approach which models and simulates the fiber and matrix directly using 3D finite elements need to be solved by efficient way. To handle this large scale problem, parallel program for solving piezoelectric behavior was developed and run on the parallel computing environment. Also, the stress result from DNS approach is compared with that from uniform field model.

  • PDF

균일전단응력을 받는 2차원 균열포함 무한체에 대한 복소응력함수 (Complex stress function for the two dimensional cracked infinite body subjected to uniform shear stress)

  • 김옥환
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2008년도 추계학술발표논문집
    • /
    • pp.79-81
    • /
    • 2008
  • 2차원균열을 포함하고 있는 무한체가 균일한 전단응력을 받고 있는 경우에 대한 복소응력함수를 기존의 응력함수를 이용하여 해석적으로 구하였다. 이는 등각사상과 정칙연속법에 의하여 구하였다. 결과는 극한의 경우에 대하여 검증하였으며 구한 복소응력함수는 맞는다는 것을 보여준다.

  • PDF

반도체 칩의 접착계면에 발생하는 열응력 해석 (Analysis of Thermal Stresses Developed in Bonding Interface of Semiconductor Chip)

  • 이상순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.437-443
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate subjected to uniform temperature change. The viscoelastic film has been assumed to be thermorheologically simple. The time-domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. The order of the free-edge singularity has been obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

후확산 공정 변수가 p+ 실리콘 박막의 잔류 응력 분포에 미치는 영향 (Effects of Drive-in Process Parameters on the Residual Stress Profile of the p+ Silicon Film)

  • 정옥찬;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.245-247
    • /
    • 2002
  • The paper represents the effects of the drive-in process parameters on the residual stress profile of the p+ silicon film. For the quantitative determination of the residual stress profiles, the test samples are doped via the fixed boron diffusion process and four types of the thermal oxidation processes and consecutively etched by the improved process. The residual stress measurement structures with the different thickness are simultaneously fabricated on the same silicon wafer. Since the residual stress profile is not uniform along the direction normal to the surface, the residual stress is assumed to be a polynomial function of the depth. All of the coefficients of the polynomial are determined from the deflections of cantilevers and the displacement of a rotating beam structure. As the drive-in temperature or the drive-in time increases, the boron concentration decreases and the magnitude of the average residual tensile stress decreases. Also, near the surface of the p+ film the residual tensile stress is transformed into the residual compressive stress and its magnitude increases.

  • PDF

균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용 (Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process)

  • 임우승;최홍석;남기주;김병민
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.

Nonlinear free vibration impact on the smart small-scale thermo-mechanical sensors for monitoring the information in sports application

  • Yi Zhang;Maryam Bagheri
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.609-625
    • /
    • 2024
  • This paper presents an in-depth analysis of the nonlinear vibration of microbeams, with a particular emphasis on their application in sports monitoring systems. The research utilizes classical beam theory, modified couple stress theory, and von-Kármán nonlinear parameters to explore the behavior of microbeams. These microbeams are characterized by a non-uniform geometry, with materials that continuously change along the beam radius and a thickness that varies along the beam length. The main contribution lies in its exploration of the stability of smart sensors in sports structures, particularly those with non-uniform geometries. The research findings indicate that these non-uniform microbeams, when used in smart systems made of functionally graded temperature-dependent materials, can operate effectively in thermal environments. The smart system developed in this study demonstrates significant potential for use in sports applications, particularly in monitoring and gathering information. The insights gained from this research contribute to the understanding of the performance and optimization of microbeams in sports applications, particularly in the context of non-uniform geometries. This research, therefore, provides a foundation for the development of advanced, reliable, and efficient monitoring systems in sports applications.

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.