• Title/Summary/Keyword: Uniform Heating

Search Result 278, Processing Time 0.023 seconds

Improved Surface Morphologies of Printed Carbon Nanotubes by Heat Treatment and Their Field Emission Properties

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.22-25
    • /
    • 2006
  • This paper presents heating process for obtaining standing carbon nanotube emitters to improve field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. In an atmosphere with optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides high reproducibility in emission current density which makes the films suitable for practical applications.

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

The Mineral Contents of Chicken Stock according to Salt Contents - Using a High-Pressure Extraction Cooking - (소금 첨가량에 따른 닭 육수의 무기질 함량 특성 - 고압 가열 추출 방식 이용 -)

  • Kim, Dong-Seok;Kim, Jong-Seck;Choi, Soo-Keun
    • Culinary science and hospitality research
    • /
    • v.14 no.4
    • /
    • pp.283-291
    • /
    • 2008
  • The present study is purposed to suggest accurate guidelines for developing standardized chicken meat stock containing salt, and to develop a product for mass production of uniform quality achieved by applying High Pressure Extraction Cooking(HPEC) using a high.pressure extractor. Through this study, we examined water contents, ash contents, salinity, turbidity and mineral contents of chicken meat stock according to the addition of salt. The ash contents increased with the increase of the addition of salt, but the water contents decreased with the increase of the addition of salt. Salinity increased with the increase of the addition of salt. Turbidity decreased with the increase of the addition of salt, and difference in turbidity according to the addition of salt was regular. Among mineral contents, Na showed the highest content, which was believed to be because of the addition of salt, and it was followed by K and P. The results of this study show that the mineral contents in the stock were different according to the addition of salt, but they were neither proportional to the addition of salt nor showed a regular pattern.

  • PDF

Variation of Morphology of Solid Particles and Microstructure in Al-Si, Al-Cu and Mg-Al Alloys During Isothermal Heat-Treatment at Semi-Solid Temperatures (반고상 온도구역에서 등온유지한 Al-Si, Al-Cu 및 Mg-Al합금의 고상형상 및 조직의 변화)

  • Jung, Woon-Jae;Kim, Ki-Tae;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.556-564
    • /
    • 1996
  • Variation of shape and size of solid particles and solute redistribution in Mg-9wt.%Al, AI-4.5wt.% Cu, and AI-7wt.%Si alloys were investigated when they were heated to semi-solid temperatures and held without stirring. In the case of Mg-9wt.% Al and Al-4.5wt.%Cu alloys, the polygonal shaped solid particles were agglomerated with non-uniform distribution, and there were no disappearance of the solid/solid boundary until the end of melting. But in the case of an Al-7wt.%Si alloys, two or three spherical shaped particles were coalesced or separated individually, and the coalesced particles had no solid/solid interface on the contrary to the prevous case. The maximum size of solid particles during isothermal heating at high temperature was smaller than that at lower temperature, but the time required to reach the maximum size at high temperature was shorter than that at lower temperature. The concentrations of main solute atom whose distribution coefficient is lower than 1, decreased in the primary solid particles as the liquid fraction increased, and the gradient of solute concentration was steeper in Mg-9wt.%Al alloy and Al-4.5wt.%Cu alloy than that of Al-7wt.%Si alloy.

  • PDF

An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe

  • Boo Joon Hong;Park Soo Yong;Kim Do Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1036-1043
    • /
    • 2005
  • Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was $2.3^{\circ}C$ while that of the copper block of the same outer dimension was $5.9^{\circ}C.$ The minimum thermal resistance of the CAHP was measured to be $0.004^{\circ}C/W.$ In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag.

Analysis on Enameled Container with Different Coating Thicknesses of Enamel in Pyrolysis Process (법랑공정에서 Enamel 도포두께에 따른 강판 용기의 변형 메커니즘 분석)

  • Park, Sang-Hu;Kang, Dong-Suk;Yu, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2020
  • To predict the thermal deformation of an oven cabinet during the enamel process, we propose a simple finite element analysis method comprising two steps: heating and cooling. To this end, the basic mechanical and thermal properties such as thermal expansion of the enamel and steel plate were experimentally studied, and the mechanical properties of four different stainless steel (SUS) plates were evaluated to select the target material for the oven at high temperature conditions from 400 ℃ to 700 ℃. In the first analysis step of the enamel process, the SUS plate was heated to 850 ℃ and was then thermally expanded without considering the enamel coating. Next, assuming the perfect bonding of two materials (enamel coating and metal plate), the enamel plate was allowed to cool to room temperature till 22 ℃. From the results of comparing the experimental and analytical data, we can make a conclusion that the proposed method can be applied to evaluate the thermal deformation of enamel products. Especially, the thermal deformation of the oven can be predicted with different enamel coating conditions, such as uniform and nonuniform coating thickness.

A Study on the Surface Hardening of SCM4 Steel Using a Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 SCM4강의 표면경화에 관한 연구)

  • Na, Gi-Dae;Shin, Byung-Heon;Shin, Ho-Jun;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.24-32
    • /
    • 2007
  • Laser surface hardening is beneficially used for surface treatment of structural steel. Due to very rapid heating and cooling rates, structural low-alloy steel(SCM4) can be hardened as self quenching. The aim of this research project is to improve the influence of the process laser parameters: laser power, spot size, surface roughness, and traverse speed. The laser beam is allowed to scan on the surface of the workpiece at the constant power(1095W), varying the traverse speed at 0.3m/min, 0.5m/min and 0.8m/min. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with uniform hardness. From the results of the experiment, it has been shown that the stable hardness is about 600$\sim$700Hv, when the laser power, focal position and the traverse speed are P=1095W, z=0mm and v=0.3m/min.

Evaluation of Characteristic for SS400 and STS304 Steel by Weld Thermal Cycle Simulation - 3rd Report: Residual Stress and Ultrasonic Parameter (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제3보: 잔류응력과 초음파 파라미터)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Jeong, Jeong-Hwan;Kim, Sung-Kwang;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2008
  • The temperature distribution in the weldment is not uniform because a weldment is locally heated. Thermal plastic deformation results from the local expansion and shrinkage by the heating and cooling of metal. Therefore, residual stresses and distortion occur in the weldment. In this study, we had conducted on the weld thermal cycle simulation that is supposed as the HAZ on SS400 steel and STS304 steel. The residual stresses that were obtained from the drawing and the weld thermal cycle simulation were estimated by X-ray diffraction. We also carried out ultrasonic test for the weld thermal cycle simulated specimens, and then conducted on nondestructive evaluation by the ultrasonic parameters obtained ultrasonic test. From the results, residual stresses of weld thermal cycle simulated specimens after the residual stress removal heat treatment are lower than that of the drawing.

Synthesis of $TiB_2-Al_2O_3$ Composite by Self-Propagating High Temperature Synthesis (SHS) and Its Pressureless Sintering (SHS법에 의한 $TiB_2-Al_2O_3$계 복합물의 합성 및 상압소결에 관한 연구)

  • 최상욱;조동수;김세용;남건태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.552-560
    • /
    • 1994
  • A composite of TiB2-Al2O3 system was successfully prepared from a mixture of TiO2, B2O3, and Al by self-propagating high temperature synthesis (SHS) with a novel characteristic, utilizing the internal oxidation heat of aluminium metal of the mixture, instead of by a conventional technique, externally heating a mixture of Ti, B and Al2O3. From a mixture with B/Ti molar ratio of =2.0, pure two phases of TiB2 and $\alpha$-Al2O3 with good crystallinity and small, uniform sizes were formed. However, when the B/Ti molar ratio of the mixture goes to a value less than 2.0, in addition to the above main minerals, a small smounts of metastable phases such as TiB and Ti3B4 were formed. It was found that about 60%, the optimum green density of compacts gave their highest reaction rate and temperature during SHS process. TiB2-Al2O3 system composite with B/Ti molar ratio of =2.0 could be pressurelessly sintered even at 190$0^{\circ}C$ under Ar gas flows without any addition of sintering aids, showing their good properties such as 91.2% in relative density, 2750 kgf/$\textrm{mm}^2$ in Vickers hardness and 2620 kgf/$\textrm{cm}^2$ in flexural strength.

  • PDF

Dielectric $Al_2O_3-SiO_2$ Films from Metal Alkoxides

  • Soh, Deawha;Natalya, Korobova E.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.957-962
    • /
    • 2003
  • The preparation of $Al_2$O$_3$-SiO$_2$ thin films from less than one micron to several tens of microns in thickness had been prepared from metal alkoxide sols. Two methods, dip-withdrawal and electrophoretic deposition, were employed for thin films and sheets formation. The requirements to be satisfied by the solution for preparing uniform and strong films and by the factors affecting thickness and other properties of the films were examined. for the preparation of thin, continuous $Al_2$O$_3$-SiO$_2$ films, therefore, metal-organic-derived precursor solutions contained Si and Al in a chemically polymerized form has been developed and produced in a clear liquid state. In the process of applying to substrates, this liquid left a transparent, continuous film that could be converted to crystalline $Al_2$O$_3$-SiO$_2$ upon heating to 100$0^{\circ}C$. And, a significant change of the film density took place in the crystallization process, thus leading to the strict requirements as to the film thickness, which could survive crystallization.

  • PDF