• 제목/요약/키워드: Uniaxial tensile

검색결과 422건 처리시간 0.029초

Characteristic responses of critical current in REBCO coated conductor tapes under tensile/compressive bending strains at 77 K

  • Diaz, Mark Angelo;Shin, Hyung Seop;Lee, Jae-Hun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.31-35
    • /
    • 2018
  • When REBCO coated conductors (CCs) are applied to superconducting devices such as coils and magnets, they are subjected to deformation in various modes such as compression/tension bending, uniaxial/transverse tension and torsion. Despite outstanding performances by REBCO CC tapes, their electromechanical properties have been evaluated primarily under uniaxial tension, therefore data about the critical current ($I_c$) response in the compressive strain region are lacking. In this study, the characteristic responses of $I_c$ in REBCO CC tapes under bending strains in the range from tensile to compressive were evaluated. The springboard bending beam was used, wherein the CC tape sample was soldered onto the surface of the springboard. A Goldacker-type bending test rig, which lacks a support holding the sample during testing, was used as a comparator. Degradation in $I_c$ behaviors, including strain sensitivity, in differently processed REBCO CC tapes were examined based on the test rig used.

이방성 가공경화를 고려한 냉간 압연강판의 넥킹 예측 (Prediction of Sheet Metal Necking with Anisotropic Hardening)

  • 인정제;김권희;함주희
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.160-166
    • /
    • 2001
  • Uniaxial necking is studied for steel sheets with initial anisotropy. The state of anisotropy is continuously altered by subsequent tensile deformation at angles to the rolling direction. The orientations of orthotropy axes are changed before the onset of necking. A simple hardening rule which incorporates the rotations of orthtropy axes is proposed and the necking strains are predicted at angles to the rolling direction. Predicted results show good agreement with the experiments.

  • PDF

Tensile strain-hardening behaviors and crack patterns of slag-based fiber-reinforced composites

  • Kwon, Seung-Jun;Choi, Jeong-Il;Nguyen, Huy Hoang;Lee, Bang Yeon
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.231-237
    • /
    • 2018
  • A strain-hardening highly ductile composite based on an alkali-activated slag binder and synthetic fibers is a promising construction material due to its excellent tensile behavior and owing to the ecofriendly characteristics of its binder. This study investigated the effect of different types of synthetic fibers and water-to-binder ratios on the compressive strength and tensile behavior of slag-based cementless composites. Alkali-activated slag was used as a binder and water-to-binder ratios of 0.35, 0.45, and 0.55 were considered. Three types of fibers, polypropylene fiber, polyethylene (PE) fiber, and polyparaphenylene-benzobisethiazole (PBO) fiber, were used as reinforcing fibers, and compression and uniaxial tension tests were performed. The test results showed that the PE fiber series composites exhibited superior tensile behavior in terms of the tensile strain capacity and crack patterns while PBO fiber series composites had high tensile strength levels and tight crack widths and spacing distances.

시험체 형상이 고인성시멘트복합체 인장거동에 미치는 영향 (Influence of Specimen Shapes on Tensile Behaviors of High Performance Fiber Reinforced Cement Composites)

  • 양일승;윤현도;한병찬;신홍철;박완신;김선우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.65-68
    • /
    • 2005
  • Social requirements to the civil and building structures have been changed in accordance with the social and economic progress. It is very important to develop the innovative structural materials and tecnology that the social requirements appropriately. Ductility of High Performance Fiber Reinforced cementitious Composites (HPFRCC), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress are drastically improved. Because ductility in tensile test are very different according to specimen shapes, three types of the direct tensile test are performed. The tensile test are performed using the tensile test specimen, dummbell-shaped specimen, and cylinder specimen. As a result, tensile performance in HPFRCC is very good comparing to cylinder specimen because of direction characteristics of fibers. It is necessary to clarify the examination method of suiting to the usage.

  • PDF

콘크리트 이방향 휨인장강도 결정을 위한 이방향 휨인장강도 시험법 개선 (The Improvement of Biaxial Flexure Test (BFT) Method for Determination of the Biaxial Flexure Tensile Strength of Concrete)

  • 김지환;지광습;오홍섭
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.389-397
    • /
    • 2011
  • 본 논문에서는 이방향 휨인장강도 시험 시 시험체에 작용하는 등방성 휨인장거동의 구현여부를 실험적으로 증명하기 위해 시험체의 변형률 측정 실험과, 시험체에 등방성 휨인장응력이 작용할 수 있도록 시험법 개선을 위한 연구를 수행하였다. 또한, 개선된 시험법을 적용하여 이방향 휨인장강도와 4점 휨인장강도 시험에 의한 일방향 휨인장강도를 측정하여 비교하였다. 실험 결과, 시험체에 발생하는 등방성 휨인장응력은 시험체의 표면 조건과 뒤틀림 정도에 많은 영향을 받는 것으로 나타났으나, 시험법 개선으로 인해 시험체에 등방성 휨인장응력상태를 확보할 수 있었다. 개선된 이방향 휨인장강도 시험에 의한 이방향 휨인장강도가 일방향 휨인장강도 보다 32% 더 큰 것으로 나타났으며, 분산성은 동일한 것으로 나타났다.

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene

  • Kim, Kangsik;Yoon, Jong Chan;Kim, Jaemin;Kim, Jung Hwa;Lee, Suk Woo;Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제49권
    • /
    • pp.3.1-3.7
    • /
    • 2019
  • Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Implementation of double scalar elastic damage constitutive model in UMAT interface

  • Liu, Pan Pan;Shen, Bo
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.153-162
    • /
    • 2021
  • This paper aims to simulate the isotropic elastic damage theory of Liu Jun (2012) using the self-programmed UMAT subroutine in the interface of ABAQUS. Liu Jun (2012)'s method based on the mechanic theory can not be used interactively with the currently commonly used finite element software ABAQUS. The advantage of this method in the paper is that it can interact with ABAQUS and provide a constitutive program framework that can be modified according to user need. The model retains the two scalar damage variables and the corresponding two energy dissipation mechanisms and damage criteria for considering the tensile and compressive asymmetry of concrete. Taking C45 concrete as an example, the relevant damage evolution parameters of its tensile and compressive constitutive model are given. The study demonstrates that the uniaxial tensile stress calculated by the subroutine is almost the same as the Chinese Concrete Design Specification (GB50010) before the peak stress, but ends soon after the peak stress. The stress-strain curve of uniaxial compression calculated by the subroutine is in good agreement with the peak stress in Chinese Concrete Design Specification (GB50010), but there is a certain deviation in the descending stage. In addition, this paper uses the newly compiled subroutine to simulate the shear bearing capacity of the shear key in a new structural system, namely the open-web sandwich slab. The results show that the damage constitutive subroutine has certain reliability.