• Title/Summary/Keyword: Uniaxial creep

Search Result 70, Processing Time 0.03 seconds

Creep Life Prediction for Udimet 720 Material Using the Initial Strain Method (ISM)

  • Kong, Yu-Sik;Yoon, Han-Ki;Oh, Sae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.469-476
    • /
    • 2003
  • Despite of considerable research results or uniaxial tension creep available for superalloys, few studies have been made on high temperature creep using the Initial Stram Method (ISM) In this paper, the real-time prediction of high temperature creep strength and creep lift for the nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure static load at the temperatures of 538$^{\circ}C$. 649$^{\circ}C$, and 704$^{\circ}C$. The predictive equation derived from the ISM in creep tests showed better reliability than those from LMP (Larson-Miller Parameter) and LMP-lSM (Larson Miller Parameter-Initial Strain Method) specially for long time creep prediction (10$^3$∼10$\^$5/h).

Modeling of Anisotropic Creep Behavior of Coated Textile Membranes

  • Yu Woong-Ryeol;Kim Min-Sun;Lee Joon-Seok
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • The present study aims at characterizing and modeling the anisotropic creep behavior of coated textile membrane, a class of flexible textile composites that are used for moderate span enclosures (roofs and air-halls). The objective is to develop a creep model for predicting the lifetime of coated textile membrane. Uniaxial creep tests were conducted on three off-axis coupon specimens to obtain the directional creep compliance. A potential with three parameters is shown to be adequate for modeling the anisotropic creep behavior of coated textile membrane. Furthermore, a possibility of predicting the creep deformation of coated textile membrane in a multi-axial stress state is discussed using the three-parameter potential.

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop;Kim, Nam-Il;Shin, Dong Ku
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.355-376
    • /
    • 2007
  • The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.

Characteristics of Short-Term Creep Rupture in STS304 Steels (STS304강의 단시간 크리프 파단특성 평가)

  • Kim, Seon-Jin;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.28-33
    • /
    • 2007
  • The objective of this paper is to investigate the relationship between the short-term creep rupture time and the creep rupture properties at three different elevated temperatures in STS304 stainless steel. Uniaxial constant stress creep rupture tests were performed on the steel to observe the creep rupture behaviors at the elevated temperatures of 600, 650 and 700, according to the testing matrix. It is very important to predict creep life in practical creep design problems. As one of the series of studies on the statistical modelling of probabilistic creep rupture time and the development of creep life prediction techniques, the relationship between applied stress and creep rupture behaviors, such as creep strain rate and rupture time, were investigated. In addition, the Monkman-Grant relationship was observed between the steady-state creep rate and the creep rupture time. The creep rupture surfaces observed by SEM showed up dimple phenomenon at all conditions.

New Considerations on Variability of Creep Rupture Data and Life Prediction (크리프 파단 데이터의 변동성에 대한 새로운 고찰과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1119-1124
    • /
    • 2009
  • This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and $700^{\circ}C$ elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

Three-Dimensional Crystallizing $\pi$-Bondings and Creep of Metals

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.238-251
    • /
    • 1995
  • Creep of metals has been explained conventionally by dislocation climb and grain boundary sliding indiffusion controlled process. The reorienations of the atoms in the grain by three dimensional crystallizing $\pi$-bondings are visualized as grain rotatins during slow deformation, fold formatin at triple point, increased crevice dspace between grains. grain boundary sliding, grain boundary micration and formation of cracks at the grain boundaries . And also the rupture time and average creep strain rate are explained by the three-dimensional crystallizing $\pi$- bondings and they can be determined by uniaxial tensile test.

  • PDF

Characteristics of Creep Deformation Behavior of Granite under Uniaxial Compression (단축압축하중을 받는 대전 화강암의 크립 변형거동 특성에 관한 연구)

  • 홍지수;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.69-77
    • /
    • 2004
  • Investigation of the time-dependent behavior of rock and the associated mechanisms are of key interest in long-term stability analysis of many engineering applications. In this study, creep tests were performed on Daejeon granite samples of 25.4mm diameter under uniaxial compression at varying stress levels. The effect of moisture was investigated by testing both air-dried and fully water-saturated samples. The creep behavior of Daejeon granite exhibited three distinctive stages of primary, secondary and tertiary creep. The ultimate strength of granite under a constant stress decreased considerably with time. Saturation and immersion of the test specimen in water markedly increased the total creep strain as well as the secondary creep rate. The experimental creep curves are fitted to Burger's model as well as two other empirical models suggested by previous researchers. A number of the parameters determined for each model are dependent on stress and influenced by the presence of water. Based on the experimental results, an empirical relation between the applied stress and the time-dependent strain is established separately for each air-dried and fully water-saturated Daejeon granite.

Variability of Short Term Creep Rupture Time and Life Prediction in Stainless Steels (스테인리스 강의 단시간 크리프 파단시간의 변동성과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.97-102
    • /
    • 2010
  • This paper deals with the variability of short term creep rupture time based on previous creep rupture tests and the statistical methodology of the creep life prediction. The results of creep tests performed using constant uniaxial stresses at 600, 650, and $700^{\circ}C$ elevated temperatures were used for a statistical analysis of the inter-specimen variability of the short term creep rupture time. Even under carefully controlled identical testing conditions, the observed short-term creep rupture time showed obvious inter-specimen variability. The statistical aspect of the short term creep rupture time was analyzed using a Weibull statistical analysis. The effect of creep stress on the variability of the creep rupture time was decreased with an increase in the stress level. The effect of the temperature on the variability also decreased with increasing temperature. A long term creep life prediction method that considers this statistical variability is presented. The presented method is in good agreement with the Lason-Miller Parameter (LMP) life prediction method.

Creep Characteristics of Granite in Gagok Mine (가곡광산 화강암의 크리프 특성)

  • Yoon, Yong-Kyun;Kim, Byung-Chul;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.390-398
    • /
    • 2010
  • The time-dependent behaviour of rock is very important characteristics which can be utilized as basic input data for underground mine design or in predicting a long-term stability of underground rock mass structures. In this study, creep tests under uniaxial compression were carried out for the granite specimens sampled in Gagok Mine. Burgers model, Griggs and Singh creep laws were used to simulate the measured creep strain. Through comparing the measured creep behaviour with the approximated creep behaviors from Burgers model, Griggs and Singh creep laws, it is shown that Griggs creep law results in the best approximation of granite in Gagok Mine.