• Title/Summary/Keyword: Ungauged basin

Search Result 66, Processing Time 0.023 seconds

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

A Study on Estimation of Lowflow Ungauged Basin Using Multiple Regression Analysis (다중회귀분석을 이용한 미계측 유역의 갈수유량 산정에 관한 연구)

  • Lim, Ga Kyun;Jeung, Se Jin;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.133-133
    • /
    • 2020
  • 갈수량이란 1년 중 355일은 유지되는 유량을 말하며 물 공급 계획 및 관리, 저수지 설계, 관개용수의 수량과 수질 관리, 생태계 보존 등에 있어서 갈수량의 크기와 빈도를 파악하는 것은 매우 중요한 과정이다. 갈수량 산정을 위해서는 오랜 기간의 관측 일유량 자료가 필요하지만 우리나라의 경우 관측 유량 자료의 결측자료가 많아 갈수량 산정에 필요한 장기간의 자료가 부족하다. 따라서 본 연구에서는 전국 40개 중권역 유역을 대상으로 갈수 빈도별 갈수량 산정 회귀식 개발을 수행하였다. 갈수량 산정에 적용할 수 있는 18개의 유역인자와 4개의 수문 인자를 상관분석을 통해 다중공선성을 고려하였으며 상관분석 결과를 토대로 미계측 유역에 적용 가능한 인자를 선정하였다. 갈수 빈도 분석과 단계적 회귀분석을 통하여 미계측 유역에 적용할 수 있는 갈수 빈도별 갈수량 산정 회귀식을 개발하였다. 또한 계측 유역을 미계측 유역으로 가정하여 개발된 갈수량 산정 회귀식을 이용하여 갈수량을 산정하고 분석 결과와 실제 갈수량을 비교하여 개발된 회귀식의 적정성을 검토하였다.

  • PDF

Suggestion of Synthetic Unit Hydrograph Method Considering Hydrodynamic Characteristic on the Basin (유역의 동수역학적 특성을 고려한 합성단위도 기법의 제시)

  • Kim, Joo Cheol;Choi, Yong Joon;Jeong, Dong Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.47-55
    • /
    • 2011
  • This study suggests new synthetic unit hydrograph method considering hydrodynamic characteristic on the basin. The suggested method based on width function GIUH, and the procedure is summarized as follows; 1) Draw up a travel distance distribution map (width function) which is raster of length between from center of individual cells to the outlet by GIS. 2) Calculation of travel time distribution map (rescaled width function) by hydrodynamic parameters and travel distance distribution map. 3) Derivation of IUH and Duration UH from rescaled width function. 4) Comparison of shape of UH between suggested method and existing synthetic unit hydrograph methods. The target basins are selected Ipyeong and Tanbu subwatershed in the Bocheong Basin. The target basins are similar scale (watershed area), but different drainage structure (drainage density et al.). Therefore we anticipate that there are different hydrologic response functions because different hydrodynamic characteristics. As a result of derivation of UH, existing synthetic unit hydrograph methods are similar shape of UHs about Ipyeong and Tanbu watersheds, but the suggested method is different shape of ones. As a result of application to observed data, the peak discharge by suggested method is similar to existing synthetic unit hydrograph methods, but the peak time is well correspondence between those. Henceforth, if the suggested method combines with the rational velocity estimation method, it is useful method for synthetic of UH in ungauged watershed.

Using asymptotic curve number regression method estimation of NRCS curve number and optimum initial loss ratio for small watersheds (점근유출곡선지수법을 이용한 소유역 유출곡선지수 산정 및 최적 초기손실률 결정)

  • Yu, Ji Soo;Park, Dong-Hyeok;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.759-767
    • /
    • 2017
  • Two main parameters of NRCS-CN method are curve numbers and intial loss ratio. They are generally selected according to the guideline of US National Engineering Handbook, however, they might cause errors on estimated runoff in Korea because there are differences between soil types and hydrological characteristics of Korean watersheds and those of United States. In this study, applying asymptotic CN regression method, we suggested eight modified NRCS-CN models to decide optimum runoff estimation model for Korean watersheds. RSR (RMSE-observations standard deviation ratio) and NSE (Nash-Sutcliffe efficiency) were used to evaluate model performance, consequently M6 for gauged basins (Avg. RSR was 0.76, Avg. NSE was 0.39) and M7 for ungauged basins (Avg. RSR was 0.82, Avg. NSE was 0.31) were selected. Furthermore it was observed that initial loss ratios ranging from 0.01 to 0.10 were more adequate than the fixed ${\lambda}=0.20$ in most of basins.

Correlations between the Stream Morphological Characteristics and the Hydraulic Geometry Characteristics for the Basin (유역(流域)의 하천형태학적(河川形態學的) 특성(特性)과 수리기하학적(水理幾何學的) 특성(特性)과의 상관성(相關性))

  • Ahn, Sang Jin;Yoon, Yong Nam;Kang, Kwan Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.1-17
    • /
    • 1982
  • The stream morphological characteristics of a river basin has a close correlation with the hydrological and hydraulic characteristics of the basin. In this study the correlations of flow duration and Hydraulic geometry with the stream morphological characteristics as well as the correlation between flow duration and hydraulic geometry were analyzed bases on the data for the Geum River basin. The purpose of this study was to provide the necessary informations for water utilization projects at ungauged locations along the river course. First of all, the stream morphological characteristics was analyzed based on the Horton's three laws on the morphology of a stream that is, the law of stream number, the law of average stream length and the law of average stream slope. As is the case for majority of the rivers it was found that the Geum River basin was well developed according to the Horton's laws. High correlations were also found between the basin characteristics and the channel characteristics. The flow duration curves obtained with the daily stream flow data of 10~90% frequency of occurences at the five stage gauging stations in the Geum River could, in general, be expressed as an exponential functional relationship. The concept of proportional stream ordering system was employed to describe continuously the longitudinal variation of the stream morphological characteristics, and the mathematical model was formulated for the discharge-frequency-proportional stream order relationship. With the morphological characteristics as a common parameter the relationships with flow duration, drainage area were established in mathematical expressions, respectively.

  • PDF

Generation of radar rainfall data for hydrological and meteorological application (II) : radar rainfall ensemble (수문기상학적 활용을 위한 레이더 강우자료 생산(II) : 레이더 강우앙상블)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • A recent increase in extreme weather events and flash floods associated with the enhanced climate variability results in an increase in climate-related disasters. For these reasons, various studies based on a high resolution weather radar system have been carried out. The weather radar can provide estimates of precipitation in real-time over a wide area, while ground-based rain gauges only provides a point estimate in space. Weather radar is thus capable of identifying changes in rainfall structure as it moves through an ungauged basin. However, the advantage of the weather radar rainfall estimates has been limited by a variety of sources of uncertainty in the radar reflectivity process, including systematic and random errors. In this study, we developed an ensemble radar rainfall estimation scheme using the multivariate copula method. The results presented in this study confirmed that the proposed ensemble technique can effectively reproduce the rainfall statistics such as mean, variance and skewness (more importantly the extremes) as well as the spatio-temporal structure of rainfall fields.

Sensitivity Analysis of the Runoff Model Parameter for the Optimal Design of Hydrologic Structures (수공구조물의 적정설계를 위한 유출모형 매개변수의 민감도 분석)

  • Lee, Jung-Hoon;Kim, Mun-Mo;Yeo, Woon-Kwang
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.755-758
    • /
    • 2008
  • Currently, the increased run-off and the shortened arrival time are one of the causes of the city environmental disasters in urbanization. Therefore, it is necessary to properly design the hydrologic structures, but it is very difficult to forecast the values necessary to design from the planning stage. Moreover, as the parameter is changed due to the urban development, it is difficult not only to analyze the run-off influences but also to find the related studies and literatures. The purpose of this study is to utilize the results as the important basic data of the hydrologic structures, its proper design and run-off influences through the sensibility analysis of the model parameter variables. In this study, the absolute and relative sensibility analysis method were used to find out the correlation through the sensibility analysis of the topology and hydrology parameters. Especially, in this study, the changes in the run-off amount and volume were calculated according to increase/decrease in CN, the coefficient of discharge, and the empirical formula is prepared and proposed through the regressive analysis among the parameters. In the meantime, the parameter sensibility analysis was performed through the simulation HEC-HMS that is used and available in Korea. From the results of this study, it was found that the run-off amount is increased about by 10% when the CN value is increased by 5% before and after the development through the HEC-HMS simulation and data analysis. As long as there will be additional data collection analysis and result verification, and continuous further studies to find out the parameters proper to the domestic circumstances, it is expected to considerably contribute to the proper design of the hydrologic structures with respect to the ungauged basin.

  • PDF

Inundation Simulations for an Ungauged Basin with a Pump Station (배수 펌프장을 포함한 미계측 유역에 대한 침수 모의)

  • Jin, Youngkyu;Lee, Sangho;Jeong, Taek-Mun;Kang, Taeuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.213-213
    • /
    • 2019
  • 소하천으로 지정된 작은 규모의 하천은 '소하천정비종합계획'에 따라 지정된 빈도 유량 내에서 범람에 의한 침수 피해를 예방하기 위해 주기적으로 정비되고 있다. 소하천으로 지정되지 않은 하천의 경우에는 하천 정비와 관련된 법이 없으므로, 하천 정비 및 하천 관련 자료들이 미흡하다. 경상남도 양산시 물금읍 증산리의 증산 배수펌프장 유역은 2016년 10월 5일 태풍 '차바'의 호우로 인해 그 일원(농경지 및 주거지)이 침수되었다. 증산 배수펌프장 유역에는 소하천으로 등록되지 않은 새도랑천과 새도랑천의 시점부로 합류되는 이름 없는 하천(무명천)이 있고, 해당 하천의 단면 및 침수 모의에 필요한 자료가 없거나 오차가 큰 경우가 있다. 본 연구의 목적은 침수 모의에 필요한 자료들이 부족한 소규모 하천 유역에 대하여 기초 자료를 구축하는 과정과 이를 이용한 침수 모의 결과를 제시하는 것이다. 증산 배수펌프장 유역에 대해 침수 모의 시 필요한 자료는 강우량, 펌프 유량, 펌프장 유수지 제원, 지반고, 하천 단면, 농수로 단면, 인근 도시 지역의 하수관거 제원 등이다. 증산 배수펌프장 유역은 유역 내 하천수의 대부분을 펌프장을 통해 배수가 가능하다. 이와 같은 유역특성을 활용하여 유수지 제원, 하천 단면, 지반고 자료는 유수지 및 하천에 있는 물을 배수해서 무인항공기 측량으로 구축하였다. 증산 배수펌프장 유역의 침수모의는 준2차원 침수 모의가 가능한 CHI 사의 PCSWMM을 이용하였다. 침수 모의를 위한 모형에서 펌프장 모의 시 입력한 수심-양수량 관계 자료는 펌프 가동 일지를 참고하여 시행착오법으로 추정하였다. 침수 모의 결과 평균 침수심은 0.226 m, 최대 침수심은 0.800 m, 침수면적은 $0.562km^2$이다. 태풍 '차바'로 인한 침수 상황에 대하여 탐문조사 결과는 침수심이 약 0.2 ~ 0.3 m이었으며, 모의된 평균 침수심이 조사결과에 부합하는 것으로 판단된다. 증산 펌프장을 통하여 양수된 양에 대한 기록 자료와 모의 결과의 차이는 펌프 모의 운영 종료 시점까지 약 0.5%이다. 본 연구의 검증 자료는 인위적인 펌프 운영 일지 및 침수 상황의 사진으로 검증했다는 한계가 있다. 그러나 무인항공기 측량 및 현장조사, 펌프 운영 일지를 활용한 수심-양수량 관계의 추정으로 생산된 입력자료를 이용하여 모의한 결과는 실제 상황에 부합하는 결과가 도출된 것으로 판단된다.

  • PDF

The derivation of GIUH by means of the lag time of Nash model (Nash 모형의 지체시간을 이용한 GIUH 유도)

  • Kim, Joo-Cheol;Yoon, Yeo-Jin;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.801-810
    • /
    • 2005
  • The lag time is one of the most important factors for estimating a flood runoff from streams. It is well known to be under the influence of the morphometric properties of basins which could be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) is applied for calculating the lag time of geomorphological instantaneous unit hydrograph(GIUH) at the basin outlet. The lag time is obtained from the observed data of rainfall and runoff by using the method of moments suggested by Nash(1957), and the procedure based on geomorphology is used for GIUH. The relationships between the basin morphometric properties and the hydrological response are discussed as applied to 3 catchments In Korea. Additionally, the shapes of equivalent ellipse are examined how then are transformed from upstream area to downstream one. As a result, the relationship between the hydrological response and descriptors is shown to be comparatively good, and the shape of ellipse is presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

Generation of High Resolution Scenarios for Climate Change Impacts on Water Resources (II): Runoff Scenarios on Each Sub-basins (수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(II): 유역별 유출시나리오 구축)

  • Jung, Il-Won;Bae, Deg-Hyo;Im, Eun-Soon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.205-214
    • /
    • 2007
  • The objective of this study is to generate the regional scale runoff scenarios by using IPCC SRES A2 climate change scenario for analyzing the spatial variation of water resources in Korea. The PRMS model was adopted to simulate long-term stream discharge. To estimate the PRMS model parameters on each sub-basin, the streamflow data at 6 dam sites and Rosenbrock's scheme are used for model parameter calibration and those parameters are translated to ungauged catchments by regionalization method. The other 3 dam sites are selected for the verification of the adequateness of regionalized model parameters in ungagued catchments. The statistical results show that the simulated flows by using regionalized parameters well agree with observed ones. The generated runoff scenarios by climate change are compared with observed data on 4 dam sites for the reference period. The consequences show that the selection of climate station for generating climate scenario affects the reliability of climate scenario at sub-basin. The comparison results of the stream flows between the 30-year baseline period (1971-2000) and future 90-year (2001-2030, 2031-2060, 2061-2090) show that the long-term mean annual runoff in the Han River has increasing trend, while the Nakdong, the Gum, the Youngsan and the Sumjin Rivers have decreasing trend.