• Title/Summary/Keyword: Unfrozen water contents

Search Result 15, Processing Time 0.024 seconds

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

Particle Spacing Analysis of Frozen Sand Specimens with Various Fine Contents by Micro X-ray Computed Tomography Scanning (Micro X-ray CT 촬영을 통한 동결 사질토 시료의 세립분 함유량에 따른 입자간 거리 분석)

  • Chae, Deokho;Lee, Jangguen;Kim, Kwang-Yeom;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The mechanical characteristics of frozen sand greatly depend on the frozen temperature and the fine contents according to the previous study by Chae et al. (2015). There are two hypotheses to explain this experimental results; one is the unfrozen water contents greatly affected by the fine contents and frozen temperature and the other is the sand particle spacing greatly affected by the pore-ice. To evaluate the latter hypothesis, the micro X-ray CT scan was performed. The micro X-ray CT scanning, one of the actively performed interdisciplinary research area, has a high resolution with micrometer unit allows to investigate internal structure of soils. In this study, X-ray CT technique was applied to investigate the effect of the frozen temperature and fine contents on the sand particle minimum and average spacing with the developed image processing techniques. Based on the spacing analysis, the frozen temperature and fine contents have little influence on the sand particle spacing in the frozen sand specimens.

Evaluation of Long-Term Deformation Prediction Model on Frozen Sand Considering Fine Contents (세립분 함량을 고려한 동결 사질토의 장기변형 예측 모델 평가)

  • Hwang, Bumsik;Chae, Deokho;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.93-103
    • /
    • 2017
  • Many countries are interested in the development of the Antarctic area because of the abundant resources and living things of high research value. Korea completed the second Antarctic research station in 2014 and spurring the development of the Antarctic area by constructing runway for the airplanes and a third Antarctic research station. However, frozen soils, unlike typical soils, are sensitive to creep behavior due to the influence of ice and unfrozen water. The creep tests for evaluating creep behaviors on the frozen soils require expensive laboratory equipments and large amount of time. Thus, various empirical models had been developed to describe the unconfined compressive creep behavior of frozen soils. In this study, new analytical creep model on frozen sands was proposed by modifying Ting's Tertiary creep model with a new parameter considering fine contents. Thus, the unconfined compressive creep tests were conducted with the frozen specimens of dense Jumoonjin sand with fine contents of 0, 5, 10 and 15% under various loads at -$5^{\circ}C$, -$10^{\circ}C$ and -$15^{\circ}C$. Consequently, the modified Tertiary creep model with a new parameter for fine contents are not enough for the description of the acutal creep behavior of the frozen sand and new framework should be developed.

Studies on the Measurement of Thermal Diffusivity and Thermophysical Characteristics of Defatted and Nondefatted Starches (전분의 열확산율 측정 및 물리적 특성에 관한 연구)

  • Kim, Min-Yong;Kong, Jai-Yul;Kim, Jeong-Han;Cheong, Jin-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The thermal diffusivity of defatted and nondefatted starches were measured on the basis of one dimensional semi-infinitive theory. Differential scanning calorymetry was used to study the effects of cooling rate, fat and water contents on the enthalpy and entropy changes with the cooling rate of $-2.5{\sim}10^{\circ}C/min$. Thermal diffusivity of defatted and nondefatted straches were determined to be $4.14{\times}10^{-4}{\sim}4.96{\times}10^{-4}(m^2/h),\;4.09{\times}10^{-4}{\sim}4.81{\times}10^{-4}(m^2/h)$ in unfrozen state, and $2.78{\times}10^{-3}{\sim}3.91{\times}10^{-3}(m^2/h),\;2.26{\times}10^{-3}{\sim}3.57{\times}1-^{-3}(m^2/h)$ in frozen state respectively. On decreasing temperatures in frozen state, thermal diffusivities of starches were increased and entropy and enthalpy were decreased, and more rapid cooling rates resulted in a decrease in entropy. A linear relation was observed between enthropy, enthaly and water content. Thermal diffusivity was decreased, and entropy was increasing fat content. With water content ranging from 35 to 90%, enthalpy and entropy of straches were found to be $107{\sim}216 (kcal /moi),\;0.45{\sim}0.94(kcal/mol.\;K)$, respectively.

  • PDF

Thermophysical Properties of the Soybean Curd and Prediction of its Thermal Conductivity 1 Measurement of Thermophysical Properties of the Soybean Curd (두부의 전열물성 및 유효열전도도의 추정 1. 두부의 전열물성의 추정)

  • KONG Jai-Yul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 1982
  • The specific heat capacity and density of soybean oil and soy protein composing of the soybean curd were measured between $30^{\circ}C\;and\;-40^{\circ}C$. The thermal conductivity of soybean oil was measured to be 0.160 and 0.140, $W/m{\cdot}K$ at unfrozen and frozen states, respectively. The effective thermal conductivity of the soybean curd depended not only on its water content but also on its fat and protein contents.

  • PDF