• Title/Summary/Keyword: Unequal Clustering

Search Result 9, Processing Time 0.023 seconds

A Layer-based Dynamic Unequal Clustering Method in Large Scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 계층 기반의 동적 불균형 클러스터링 기법)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6081-6088
    • /
    • 2012
  • An unequal clustering method in wireless sensor networks is the technique that forms the cluster of different size. This method decreases whole energy consumption by solving the hot spot problem. In this paper, I propose a layer-based dynamic unequal clustering using the unequal clustering model. This method decreases whole energy consumption and maintain that equally using optimal cluster's number and cluster head position. I also show that proposed method is better than previous clustering method at the point of network lifetime.

An Energy Efficient Unequal Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적인 불균형 클러스터링 알고리즘)

  • Lee, Sung-Ju;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.783-790
    • /
    • 2009
  • The necessity of wireless sensor networks is increasing in the recent years. So many researches are studied in wireless sensor networks. The clustering algorithm provides an effective way to prolong the lifetime of the wireless sensor networks. The one-hop routing of LEACH algorithm is an inefficient way in the energy consumption of cluster-head, because it transmits a data to the BS(Base Station) with one-hop. On the other hand, other clustering algorithms transmit data to the BS with multi-hop, because the multi-hop transmission is an effective way. But the multi-hop routing of other clustering algorithms which transmits data to BS with multi-hop have a data bottleneck state problem. The unequal clustering algorithm solved a data bottleneck state problem by increasing the routing path. Most of the unequal clustering algorithms partition the nodes into clusters of unequal size, and clusters closer to the BS have small-size the those farther away from the BS. However, the energy consumption of cluster-head in unequal clustering algorithm is more increased than other clustering algorithms. In the thesis, I propose an energy efficient unequal clustering algorithm which decreases the energy consumption of cluster-head and solves the data bottleneck state problem. The basic idea is divided a three part. First of all I provide that the election of appropriate cluster-head. Next, I offer that the decision of cluster-size which consider the distance from the BS, the energy state of node and the number of neighborhood node. Finally, I provide that the election of assistant node which the transmit function substituted for cluster-head. As a result, the energy consumption of cluster-head is minimized, and the energy consumption of total network is minimized.

An Energy Consumption Model using Hierarchical Unequal Clustering Method (계층적 불균형 클러스터링 기법을 이용한 에너지 소비 모델)

  • Kim, Jin-Su;Shin, Seung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2815-2822
    • /
    • 2011
  • Clustering method in wireless sensor networks is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. In this paper, I propose the hierarchical unequal clustering method using cluster group model. This divides the entire network into two layers. The data aggregated from layer 2 consisted of cluster group is sent to layer 1, after re-aggregation the total data is sent to base station. This method decreases whole energy consumption by using cluster group model with multi-hop communication architecture. Hot spot problem can be solved by establishing unequal cluster. I also show that proposed hierarchical unequal clustering method is better than previous clustering method at the point of network energy efficiency.

Scheduling Model for Centralized Unequal Chain Clustering (중앙 집중식 불균등 체인 클러스터링을 위한 스케줄링 모델)

  • Ji, Hyunho;Baniata, Mohammad;Hong, Jiman
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • As numerous devices are connected through a wireless network, there exist many studies conducted to efficiently connect the devices. While earlier studies often use clustering for efficient device management, there is a load-intensive cluster node which may lead the entire network to be unstable. In order to solve this problem, we propose a scheduling model for centralized unequal chain clustering for efficient management of sensor nodes. For the cluster configuration, this study is based on the cluster head range and the distance to the base station(BS). The main vector projection technique is used to construct clustering with concentricity where the positions of the base stations are not the same. We utilize a multiple radio access interface, multiple-input multiple-output (MIMO), for data transmission. Experiments show that cluster head energy consumption is reduced and network lifetime is improved.

Energy-Efficient Cluster Head Selection Method in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적 클러스터 헤드 선정 기법)

  • Nam, Choon-Sung;Jang, Kyung-Soo;Shin, Ho-Jin;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2010
  • Wireless sensor networks is composed of many similar sensor nodes with limited resources. They are randomly scattered over a specific area and self-organize the network. For guarantee of network life time, load balancing and scalability in sensor networks, sensor networks needs the clustering algorithm which distribute the networks to a local cluster. In existing clustering algorithms, the cluster head selection method has two problems. One is additional communication cost for finding location and energy of nodes. Another is unequal clustering. To solve them, this paper proposes a novel cluster head selection algorithm revised previous clustering algorithm, LEACH. The simulation results show that the energy compared with the previous clustering method is reduced.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.

Distance Aware Intelligent Clustering Protocol for Wireless Sensor Networks

  • Gautam, Navin;Pyun, Jae-Young
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.122-129
    • /
    • 2010
  • Energy conservation is one of the most important issues for evaluating the performance of wireless sensor network (WSN) applications. Generally speaking, hierarchical clustering protocols such as LEACH, LEACH-C, EEEAC, and BCDCP are more efficient in energy conservation than flat routing protocols. However, these typical protocols still have drawbacks of unequal and high energy depletion in cluster heads (CHs) due to the different transmission distance from each CH to the base station (BS). In order to minimize the energy consumption and increase the network lifetime, we propose a new hierarchical routing protocol, distance aware intelligent clustering protocol (DAIC), with the key concept of dividing the network into tiers and selecting the high energy CHs at the nearest distance from the BS. We have observed that a considerable amount of energy can be conserved by selecting CHs at the nearest distance from the BS. Also, the number of CHs is computed dynamically to avoid the selection of unnecessarily large number of CHs in the network. Our simulation results showed that the proposed DAIC outperforms LEACH and LEACH-C by 63.28% and 36.27% in energy conservation respectively. The distance aware CH selection method adopted in the proposed DAIC protocol can also be adapted to other hierarchical clustering protocols for the higher energy efficiency.

Avoiding Energy Holes Problem using Load Balancing Approach in Wireless Sensor Network

  • Bhagyalakshmi, Lakshminarayanan;Murugan, Krishanan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1618-1637
    • /
    • 2014
  • Clustering wireless sensor network is an efficient way to reduce the energy consumption of individual nodes in a cluster. In clustering, multihop routing techniques increase the load of the Cluster head near the sink. This unbalanced load on the Cluster head increases its energy consumption, thereby Cluster heads die faster and create an energy hole problem. In this paper, we propose an Energy Balancing Cluster Head (EBCH) in wireless sensor network. At First, we balance the intra cluster load among the cluster heads, which results in nonuniform distribution of nodes over an unequal cluster size. The load received by the Cluster head in the cluster distributes their traffic towards direct and multihop transmission based on the load distribution ratio. Also, we balance the energy consumption among the cluster heads to design an optimum load distribution ratio. Simulation result shows that this approach guarantees to increase the network lifetime, thereby balancing cluster head energy.

Classification of Time-Series Data Based on Several Lag Windows

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.377-390
    • /
    • 2010
  • In the case of time-series analysis, it is often more convenient to rely on the frequency domain than the time domain. Spectral density is the core of the frequency-domain analysis that describes autocorrelation structures in a time-series process. Possible ways to estimate spectral density are to compute a periodogram or to average the periodogram over some frequencies with (un)equal weights. This can be an attractive tool to measure the similarity between time-series processes. We employ the metrics based on a smoothed periodogram proposed by Park and Kim (2008) for the classification of different classes of time-series processes. We consider several lag windows with unequal weights instead of a modified Daniel's window used in Park and Kim (2008). We evaluate the performance under various simulation scenarios. Simulation results reveal that the metrics used in this study split the time series into the preassigned clusters better than do the raw-periodogram based ones proposed by Caiado et al. 2006. Our metrics are applied to an economic time-series dataset.