• Title/Summary/Keyword: Undrained triaxial tests

Search Result 129, Processing Time 0.023 seconds

A Constitutive Model on the Behavior under $K_0$ Condition for Weathered Soils. (풍화토의 $K_0$ 조건하 거동에 대한 구성모델)

  • Oh, Se-Boong;Kim, Wook;Jeong, Gahng-Bok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.169-174
    • /
    • 2003
  • Undrained triaxial tests were performed under $K_{0}$ condition for a weathered soil, which includes local measurement using LVDT. An anisotropic hardening model based on effective stress concept could predict the stress-strain relationship under $K_{0}$ condition reasonably, which makes it possible to analyze geotechnical problems for the weathered soil.

  • PDF

Seismic Response Characteristics of Layered Ground Considering Viscoelastic Effects of Clay (점성토의 점탄성 특성을 고려한 층상지반의 지진응답특성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.19-26
    • /
    • 2011
  • In order to estimate the viscous effects of clay over a wide range of strain levels, we confirmed the performance of a viscoelastic-viscoplastic constitutive model by simulating cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of natural marine clay. The viscoelastic-viscoplastic constitutive model was then incorporated into an effective stress-based seismic response analysis to estimate the effects of an intermediate clay layer on the behavior of sand layers. Seismic response was simulated by the cyclic viscoelastic-viscoplastic constitutive model created with data recorded at Rokko Island, Kobe, Japan. The results show that a cyclic viscoelastic-viscoplastic constitutive model can provide a good description of dynamic behavior including viscoelastic effects, within a small strain range.

Shear Characteristics of Weathered Granite Soils for Degree of Weathering and Saturation (화강토의 풍화도와 포화도에 따른 전단특성)

  • Song, Chang-Seob;Jang, Wong-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • The aim of the work described in this paper is to study the shear characteristics of the weathered granite soil. To this end, a series of consolidated undrained triaxial compression tests are carried out to investigate the shear parameters-cohesion and internal friction angle for the degree of saturation and degree of weathering. From the results, it is found that the shear parameters of weathered granite soil are influenced on the degree of saturation, degree of weathering and disturbance. Especially, internal friction angle is more influenced on the upper factors than cohesion. And shear parameters are more acted on the degree of saturation than the degree of weathering in the test range. It is, therefore, recommended that must be considered the conditions of granite soil-degree of saturation, degree of weathering and disturbance etc-in case of the calculation of bearing capacity, stability analysis and other designs with shear parameters.

  • PDF

Shearing Behaviors of the Soft Marine Clay in Undrained and Drained Conditions (연약해성점토의 비배수 및 배수 전단 거동)

  • 이영휘;김용준;정강복
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.29-36
    • /
    • 2001
  • 한반도 남해안의 광양만에서 채취한 연약 해성점토의 물리적 및 역학적 특성을 조사하기 위한 일련의 실내시험을 수행하였다. 물리적 성질 및 압밀시험 결과의 분석에 따르면, 시험에 사용된 시료는 정규압밀점토로 나타났다. 압밀비배수 삼축시험 결과로부터 새로운 간극수압계수(C)를 제안하였고, 이 계수는 유효응력경로를 예측하기 위한 방정식에 적용되었다. 또한, 비배수조건에서 전단변형률은 오로지 응력비만의 함수라는 사실이 실험결과로부터 밝혀졌다. 따라서 비배수 조건에서의 전단변형률 계산식이 제안되었으며, 이들 관계식을 이용하여 비배수(CIU) 및 배수조건(CID)에서의 점토의 거동을 예측하기 위한 새로운 구성방정식이 제안되었다. 이 구성방정식은 Roscoe와 Poorooshasb이 제안한 증분응력-변형률 이론을 기초로 하였으며, 제안된 구성방정식을 적용하여 예측한 배수전단특성을 실측된 결과에 매우 근접하는 경향을 나타내었다.

  • PDF

Strength Characteristics and Reinforcing Effect of Compacted Short Fiber Reinforced Clay (단섬유 보강된 다짐토의 강도특성과 보강 효과(지반공학))

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.451-457
    • /
    • 2000
  • A series of consolidated undrained triaxial tests for compacted short fiber reinforced clay were performed to increase the field applications, e.g. retaining wall, waste landfill, soft ground etc. of soil admixtures mixed with short fiber. Kaolin clay and three types of fiber were selected. To acquire reliable length of fibers, an auto cutter was used and a helical mixer was also used to avoid floating of fibers during mixing soil and fibers. It is found that reinforcing effect by aspect ratio and mixing ratio of short fiber decreases as confining pressure is increased. Reinforcing effect has a maximum value at the aspect ratio of 120 and the fiber content of 0.6%∼1.2% and low confining pressure like 50kPa.

  • PDF

Integration of Stress-Strain Rate Equations of CASM

  • Koh, Tae-Hoon
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In transportation geotechnical engineering, stress-strain behavior of earth structures has been analyzed by numerical simulations with the implemented plasticity constitutive model. It is a fact that many advanced plasticity constitutive models on predicting the mechanical behavior of soils have been developed as well as experimental research works for geotechnical applications in the past decades. In this study, recently developed, a unified constitutive model for both clay and sand, which is referred to as CASM (clay and sand model), was compared with a classical constitutive model, Cam-Clay model. Moreover, integration methods of stress-strain rate equations using CASM were presented for simulation of undrained and drained triaxial compression tests. As a conclusion, it was observed that semi-implicit integration method has more improved accuracy of capturing strain rate response to applied stress than explicit integration by the multiple correction and iteration.

  • PDF

Modified Disturbed State Concept for Dynamic Behaviors of Fully Saturated Sands (포화사질토의 동적거동규명을 위한 수정 교란상태개념)

  • 최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.107-114
    • /
    • 2003
  • There are many problems in the prediction of dynamic behaviors of saturated soils because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical constitutive models based on the effective stress concept have been proposed but most models hardly predict the excess pore water pressure and strain softening behaviors correctly In this study, the disturbed state concept (DSC) model proposed by Dr, Desai was modified to predict the saturated soil behaviors under the dynamic loads. Also, back-prediction program was developed for verification of modified DSC model. Cyclic triaxial tests were carried out to determine DSC parameters and test result was compared with the result of back-prediction. Through this research, it is proved that the proposed model based on the modified disturbed state concept can predict the realistic soil dynamic characteristics such as stress degradation and strain softening behavior according to dynamic process of excess pore water pressure.

  • PDF

Estimation of Undrained Shear Strength Using Piezocone Test (피에조 콘 시험을 이용한 점성토의 비배수 강도 추정)

  • 박용원;구남실;이상익
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.169-179
    • /
    • 2003
  • Undrained shear strength of clay deposit is one of the most important properties in the design of geotechnical structures. The use of piezocone test is rapidly growing due to its merit that can measure the in-situ undrained shear strength continuously with less error. The reliability of the shear strength from piezocone test depends upon the cone factor applied. Many researchers have suggested different ranges of values for the factors. This study performs to find out the validity of the suggested values in Korea and their charateristics related to the mechanical properties of clay. Piezocone tests were performed at the site of pilot project of ground improvement at Yangsan-Mulgeum Gyeongnam to investigate the charateristics of piezocone factors. The piezocone fators$(N_{kt}, N_{ke}, N_{\Delta u})$ based on the undrained shear strength from quick triaxial compression test are generally within the suggested range. And there appears considerable relations between undrained shear strength and $(N_{kt}, N_{ke}, N_{\Delta u})$ and between preconsolidation pressure and $(N_{kt}, N_{ke})$, while plasticity index, rigidity index and friction ratio do not show any relations with cone factors. The results also reveal that factor $(N_{\Delta u})$ shows higher reliability than factors $(N_{kt} and N_{ke})$, which show smaller standard deviation, breadth of change and scattering.

Piezocone Factors of Korean Clayey Soils (국내 점성토 지반의 피에조콘 계수)

  • 장인성;이선재;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.15-24
    • /
    • 2001
  • In order to evaluate undrained shear strength of clayey soils using Piezocone Penetration Test (CPTu), piezoncone factor is utilized. Commonly, piezoncone factors determined by empirical basis were preferred, which were established by correlation between measurements of piezocone test and undrained strengths obtained from other shearing tests. However, previous studies on the empirical piezocone factors were site-specific and there have been no systematic investigations on the effect of both engineering characteristics of clayey soils and soil non-homogeneity on the piezocone factor. Accordingly, the direct application of the previous results to Korean clayey soils without verification may be inappropriate. In this study, empirical piezocone factors are evaluated by comparing 46 CPTu results of 10 test sites with undrained shear strength obtained from Field Vane Test (FVT) and laboratory triaxial tests. Their reliabilities are investigated by the comparison with the previous piezocone factors and the deviation of data distribution from the mean values. And the effects of referencing test methods and typical engineering characteristics of clayey soils such as overconsolidation ratio (OCR) and plastic Index (I$_{p}$) are examined. Because piezocone factors obtained for various soil conditions are widely distributed, it is not appropriate to use the mean value as a representative. Instead, it is recommended to apply the piezocone factors with OCR, which is found to be a major factor in deriving piezocone factor. The necessitated piezocone factors are presented.d.

  • PDF

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.