• Title/Summary/Keyword: Undrained triaxial tests

Search Result 129, Processing Time 0.023 seconds

Evaluation of CPTu Cone Factors for Busan Clay Using Pore Pressure Ratio (간극수압비를 이용한 부산점토의 CPTu 콘계수 추정)

  • Hong, Sung-Jin;Lee, Moon-Joo;Kim, Tai-Jun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.77-88
    • /
    • 2009
  • Cone factors, $N_{kt}$, $N_{ke}$ and $N_{{\Delta}u}$, for estimating undrained shear strength of Busan clay are evaluated in this study. For this, CPTu and field vane tests are performed for clay layers at two sites, Busan new-port and Noksan, and also $CK_0U$ triaxial tests with undisturbed samples taken from the same site are carried out. From experimental results, it is observed that the undrained shear strengths of clay increases with depth, and the undrained shear strength obtained from triaxial tests is 1.5 times higher than one obtained from vane tests. The normalized undrained shear strengths of Busan clay from triaxial and vane shear tests are $0.26{\sim}0.44$ and $0.20{\sim}0.23$, respectively. In CPTu results, cone tip resistance ($q_c$) and pore pressure ($u_2$) linearly increase with depth, and the pore pressure ratio ($B_q$) of Busan clay is within the range of $0.3{\sim}1.0$. The cone factors, which are determined by comparing the CPTu results with $CK_0U$ triaxial and vane shear test results, are found to be $5{\sim}20$ and $10{\sim}35$, respectively. It is also observed that the cone factors are inversely proportional to the pore pressure ratio. From this, the prediction methods for evaluating the cone factors of Busan clay are developed.

Effects of Anisotropic Consolidation on Strength of Soils (이방압밀이 흙의 강도에 미치는 영향)

  • 강병희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

Shear Rate Effect on Undrained Shear Behavior of Holocene Clay (자연 퇴적 점성토의 비배수 전단강도에 미치는 전단 속도의 영향)

  • Jung, Min-Su;Chae, Jong-Gil;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1181-1192
    • /
    • 2008
  • A laboratory investigation was carried out into effects of strain rate on undrained shear behavior of Holocene clay underneath Kobe Airport with an objective to evaluate the factor of safety of the retaining structure built on it. It was examined in a series of triaxial compression and extension tests performed using different rate of axial straining. A comparative compression test in which the strain rate was changed in steps was also carried out. Similar tests were performed in constant-volume direct shear box (DSB) test. And, the deformation characteristics of the clay were also examined in order to evaluate the variation of stiffness during undrained shearing. It was found that the undrained strength increased with not only the shear rate but also the consolidation period. ISOTACH properties seemed a key to govern the undrained shear behavior.

  • PDF

Behaviour of Nak-dong River Sand on Cyclic Stress History (낙동강 모래의 반복응력이력에 의한 거동)

  • 김영수;박명렬;김병탁;이상복
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Earthquakes not only produce additional load on the structures and underlying soil, but also change the strength characteristics of the soil. Therefore, in order to analyze soil structures for stability, the behaviour after earthquake must be considered. In this paper, a series of cyclic triaxial tests and monotonic triaxial tests were carried out to investigate the undrained shear strength and liquefaction strength characteristics of Nak-Dong River sand soils which were subjected to cyclic loading. The sample was consolidated in the first stage and then subjected to stress controlled cyclic loading with 0.1Hz. After the cyclic loading, the cyclic-induced excess pore water pressure was dissipated by opening the drainage valve and the sample was reconsolidated to the initial effective mean principal stress(p/sub c/'). After reconsolidation, the monotonic loading or cyclic loading were applied to the specimen. In the results, the undrained shear strength and liquefaction strength characteristics depended on the pore pressure ratio(Ur=U/p/sub c/'). The volume change following reconsolidation can be a function of cyclic-induced excess pore water pressure and the maximum double amplitude of axial strain.

  • PDF

Liquefaction Behaviour and Prediction of Deviator Stress for Unsaturated Silty Sand

  • Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.35-43
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour and predict deviator stress with matric suction, of unsaturated silty sand. The unsaturated soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. The axis translation technique was used to create the desired matric suctions in the specimen. Undrained triaxial compression tests were carried out at matric suction of 0, 2, 5, 10 and 25 kPa. The specimens were sheared to axial strains of about 20% to obtain steady state conditions. The results showed that liquefaction of silty sand only occurs at matric suction of 0 kPa and 2 kPa. The results also show that at matric suctions of 5, 10 and 25 kPa, the resistance to liquefaction increases. As the suction increases, the undrained effective stress path approached the drained stress path. Also, the predicted and measured maximum deviator stress for unsaturated soils using the effective stress concept showed good agreement as matric suction increases. The deviator stress increase is nonlinear as matric suction increases.

Liquefaction Behaviour of Saturated Silty Sand Under Monotonic Loading Conditions (정적하중 상태에서 포화된 실트질 모래의 액상화 거동)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.67-74
    • /
    • 2006
  • This study was carried out to investigate the liquefaction behaviour of saturated silty sand under monotonic loading conditions. The undrained soil tests were conducted using a modified triaxial cell and specimens were prepared using the moisture tamping method. Undrained triaxial compression tests were performed at different confining pressures, void ratios and overconsolidation ratios and the samples were sheared to axial strains of about 20% to obtain monotonic loading conditions. It is shown that increasing confining pressures, void ratios and overconsoildation ratios increases the deviator stress, but it has no effect on increasing the dilatant tendencies. It is shown that complete static liquefaction was observed regardless of increases in the confining pressure, void ratio and overconsolidation ratio. Therefore, the confining pressure, void ratio and overconsoildation ratio does not provide significant effects on the liquefaction resistance of the silty sand. The presence of fines in the soil was shown to greatly increase the potential for static liquefaction and creates a particle structure with high compressibility for all cases.

Characteristics of Undrained Shear Behavior for Nak-Dong River Sand Due to Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 전단거동 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.916-923
    • /
    • 2005
  • In this study, to observe aging effect of undrained shear behavior for Nak-Dong River sand, undrained static and cyclic triaxial tests were performed with changing relative density ($D_r$), consolidation stress ratio($K_c$) and consolidation time. As a result of the test, the modulus of elasticity to all samples estimated within elastic zone by the micro strain of about 0.05% in case of static shear behavior increased with the lapse of consolidation time significantly, so aging effect was shown largely. Also strength of phase transformation point(S_{PT}$) and strength of critical stress ratio point($S_{CSR}$) increased with the lapse of consolidation time. Undrained cyclic shear strength($R_f$) obtained from the failure strain 5% increased in proportion to relative density($D_r$) and initial static shear stress($q_{st}$), $R_f$ of consolidated sample for 1,000 minutes increased about 10.6% compared to that for 10 minutes at the loose sand, and $R_f$ increased about 7.0% at the medium sand. In situ application range of $R_f$ to the magnitude of earthquake for Nak-Dong River sand was proposed by using a increasing rate of $R_f$ as being aging effect shown from this test result.

  • PDF

The Effects of Sample Disturbance on Undrained Properties of Yangsan Clay (양산점토의 비배수 특성에 대한 시료교란의 효과)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.639-646
    • /
    • 2000
  • It is important to estimate the mechanical properties of clay since it is directly related to the design and the construction of geotechnical structures. Site exploration, which is composed of boring, sampling, in-situ, or laboratory tests, is preformed to estimate the mechanical properties. However, mechanical properties of clay measured from laboratory test may be different from in-situ properties due to disturbances occurred during sampling, transportation, storage, and trimming. In this study, the degree of disturbance according to sampling method was estimated with the test results of CK/sub o/U triaxial compression test on Yangsan clay. The soil samples were obtained by three types of sampling method, j.e., 76mm-tube sampler, 76mm-piston sampler, and block sampler. In order to evaluate the quality of samples, volumetric strain, undrained shear strength, secant Young's modulus, and pore pressure coefficient at peak measured from each sample were compared with one another. From the test results, it was observed that mechanical properties of the block and piston samples were more reliable than those of tube samples. But it was observed that the water content of piston was similar to that of tube samples at given depths while the water content of block samples was 14.3∼15.8% smaller than that of piston and tube samples. In addition to the evaluation of the quality of samples, relationship between c/sub u// σ/sub vc/'and OCR was established from the results of the CK/sub o/U triaxial compression tests, which were carried out using SHANSEP method. And also undrained shear strength was analyzed using the in-situ test data such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that evaluated from CK/sub o/U triaxial compression test.

  • PDF

Undrained Behavior of $K_0$ Consolidated Clay due to Strain Rate ($K_0$ 압밀 점토의 변형율 의존 비배수 전단거동)

  • Kim, Jin-Won;Lee, Chang-Ho;Lee, Moon-Ju;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1039-1046
    • /
    • 2005
  • After clay particles have been sediment isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the laboratory test should be enforced under $K_0$-stress system and should obtain the characteristics of normally consolidated clays. And relationship of stress-strain on clay is effected on not only method of consolidation but also characteristic of visco-plastic behavior. Saturated clay is effected more this trend. So, rate of strain is considered to understand exact stress-strain relationship. In this study, the series of undrained triaxial compression tests were preformed on remolded specimens which was made by slurry of clay, consolidated under $K_0$-stress systems. And the undrained triaxial compression test were preformed to examine behavior of stress-strain relationship due to rate of shear strain relationship due to rate of shear strain.

  • PDF

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.