• Title/Summary/Keyword: Undrained strength

Search Result 279, Processing Time 0.029 seconds

Estimation of Undrained Shear Strength for Clays Using Effective Cone Factor (유효콘계수를 이용한 포화점토의 비배수전단강도 평가)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.133-141
    • /
    • 2008
  • In this study, a new method for estimating the undrained shear strength $s_u$ of saturated clays using piezocone penetration test (CPTu) result is proposed. This is to develop more effective CPTu-based $s_u$ estimation method at lower cost with less uncertainty. For this purpose, a marine clay deposit is selected and tested through extensive experimental testing program including both in-situ and fundamental laboratory tests. The proposed method is based on a correlation between the undrained shear strength $s_u$ and the cone resistance $q_t$, without introduction of the total overburden stress into the $s_u-q_t$ correlation. As a result, no additional testing procedure for collecting undisturbed soils samples is required, which can reduce overall testing cost. To verify the proposed method, 4 test sites, which consist of a variety of soil conditions, are selected and used for comparison between measured and predicted undrained shear strength. From comparison, it is seen that predicted values of $s_u$ using the proposed method match well those from measured results.

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength (흙의 비배수전단강도가 0이 되는 함수비인 흐름한계의 제안)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.73-84
    • /
    • 2013
  • When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content. The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.

Evaluation of Undrained Shear Strength of Busan New-port Clay by DMT (DMT를 이용한 부산신항 점토의 비배수 전단강도 추정)

  • Hong, Sung-Jin;Shin, Dong-Hyun;Kim, Dong-Hee;Jung, Sang-Jin;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.87-98
    • /
    • 2007
  • A series of dilatometer test, field vane test, and $CK_0U$ triaxial test were performed for clayey soils of Busan new port site to develop the relationships between undrained shear strength and the DMT results. Normalized undrained shear strength is turned out to be $S_{u(CKU)}/{\sigma}'_v=0.30{\sim}0.35\;for\;CK_0U$ triaxial test and ${\mu}S_{u(VST)}/{\sigma}'_v=0.20{\sim}0.22$ for vane shear test. By comparing the undrained shear strength estimated from DMT indices with the results measured by in-situ vane test or $CK_0U$ triaxial test, two methods to predict the undrained shear strength from DMT results are suggested. One is based on the relationship between $S_u/{\sigma}'_v$ and horizontal stress index (KD) while another method comes from $N_c-I_D$ and $N_c-E_D$ correlation. It was observed that the method based on $N_c-I_D\;or\;N_c-E_D$ relation shows slightly better accuracy than the one based on $K_D$ although all of the methods suggested in this study provided comparable values of predicted undrained shear strength. Since the definitions of $I_D\;and\;E_D$ contain $p_1-p_0$, in which soil condition is reflected, it is believed that the prediction method using $N_c$ is capable of taking a material type into consideration.

Effect of Consolidation Methods on Shear Strength of Normally Consolidated Clay (정규압밀잡토의 비배수전단강도에 미치는 압밀방법의 영향)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1987
  • Although natural soil deposits hat.e been consolidated under Ko-stress system, the soil behavior has been predicted in laboratory from the results of tests performed on specimens consolidated under an isotropic stress s).stem. A series of undrained triaxial compression tests are performed on remolded specimens of clay consolidated under both types of stress systems, and the results at.e compared. One dimensional consolidation history induces anisotropy in clalrs, which is called as the stress induced anisotropy. However, if the clays would be reconsolidated under isotropic stress system. the anisotropy of undrained stress비h would be decreased with decrease of overconsolidation ratio. Undrained shear strength of norma]Iy consolidated clay depends on consolidation methods. Both the Rutledge hypothesis and the study of Henkel and Sowa do not agree with the test results obtained in this paper. In addition, a new theory is explained about the relationships between consolidation stresses, water contents and undiained shear strength.

  • PDF

Estimation of Replacement Depth for the Sea-dike Construction (방조재 시공을 위한 강제치환심도의 추정)

  • Chang, Pyoung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The research has been done to obtain a empirical equation for the depth of replacement by the analysis of data collected from 8 sea-dike construction sites of south coast of Korean peninsula. The correlation analysis results show that the depth of replacement was mainly dependent upon the height of embankment and the undrained shear strength of soft soil. The suggested regression equation was quite well predicted the depth of replacement and recommended to use under certain restrictions where the embankment height was less than 10m and under 0.2 kgf/cm^{2} of the undrained shear strength of soil.

V%drained Creep Rupture of an Anisotropically Overconsolidated Clay (이방과압밀점토의 비배수크리프파괴)

  • 강병희;오선호
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.153-162
    • /
    • 1996
  • The undrained creep tests with isotropically and anisotropically overconsolidated clays were performed to investigate the effects of anisotropic consolidation on the undrained creep rupture behavior. Results of tests showed that the undrained creep rupture behaviors were iuluenced significantly by stress history including overconsolidation ratio and consolidation pressure ratio$(\sigma_{3c}/\sigma_{le})$. That is. the creep strength of clay increases with the increase of both overconsolidation ratio and consolidation pressure ratio. It, therefore, is dangerous to decide the possibility of creep rupture of clay by the isotropically consolidated creep rupture test in the case of the coefficient of earth pressure lower than 1.0. And the creep strength of clay could be obtained by the equation of the upper yield strength suggested by Finn and Shead(1973) irrespective of both overconsolidation ratio and consolidation pressure ratio.

  • PDF

Interpretation of Empirical Cone Factors for Determining Undrained Strength (비배수강도 결정을 위한 콘 지수 연구)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3296-3301
    • /
    • 2009
  • The results of PCPT(Pezocone Penetration Test) are widely used for the estimation of the undrained shear strength, for which the empirical cone factors($N_{kt}$, $N_{ke}$, $N_{{\Delta}u}$) need to be obtained at each site. In this study, the cone factors were estimated, for the soils at Bookmyun area in Changwon city, using the undrained shear strengths from the unconfined and UU triaxial compression tests. The parametric studies with plastic index and pore water pressure ratio were performed as well. $N_{kt}$, $N_{ke}$ and $N_{{\Delta}u}$ were estimated in the ranges of 8~40, 7~37, and 1~26 respectively. It was observed that there is a relationship between the cone factors, specially $N_{{\Delta}u}$, and the pore pressure ratio.

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

Stability assessment of unlined tunnels with semicircular arch and straight sides in anisotropic clay

  • Bibhash Kumar;Jagdish P. Sahoo
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • This paper presents stability evaluation of unlined tunnels with semi-circular arch and straight sides (SASS) driven in non-homogeneous and anisotropic undrained clay. Numerical analysis has been conducted based on lower bound finite element limit analysis with second order cone programming under plane strain condition. The solutions will be used for the assessment of stability of unlined semi-circular arch tunnels and tunnels in which semi-circular roof is supported over rectangular/square sections. The stability charts have been generated in terms of a non-dimensional factor considering linear variation in undrained anisotropic strength for normally consolidated and lightly over consolidated clay with depth, and constant undrained anisotropic strength for heavily over-consolidated clay across the depth. The effect of normalized surcharge pressure on ground surface, non-homogeneity and anisotropy of clay, tunnel cover to width ratio and height to width ratio of tunnel on the stability factor and associated zone of shear failure at yielding have been examined and discussed. The geometry of tunnel in terms of shape and size, and non-homogeneity and anisotropy in undrained strength of clay has been observed to influence significantly the stability of unlined SASS tunnels.

Estimation of Undrained Shear Strength Using Piezocone Test (피에조 콘 시험을 이용한 점성토의 비배수 강도 추정)

  • 박용원;구남실;이상익
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.169-179
    • /
    • 2003
  • Undrained shear strength of clay deposit is one of the most important properties in the design of geotechnical structures. The use of piezocone test is rapidly growing due to its merit that can measure the in-situ undrained shear strength continuously with less error. The reliability of the shear strength from piezocone test depends upon the cone factor applied. Many researchers have suggested different ranges of values for the factors. This study performs to find out the validity of the suggested values in Korea and their charateristics related to the mechanical properties of clay. Piezocone tests were performed at the site of pilot project of ground improvement at Yangsan-Mulgeum Gyeongnam to investigate the charateristics of piezocone factors. The piezocone fators$(N_{kt}, N_{ke}, N_{\Delta u})$ based on the undrained shear strength from quick triaxial compression test are generally within the suggested range. And there appears considerable relations between undrained shear strength and $(N_{kt}, N_{ke}, N_{\Delta u})$ and between preconsolidation pressure and $(N_{kt}, N_{ke})$, while plasticity index, rigidity index and friction ratio do not show any relations with cone factors. The results also reveal that factor $(N_{\Delta u})$ shows higher reliability than factors $(N_{kt} and N_{ke})$, which show smaller standard deviation, breadth of change and scattering.