• Title/Summary/Keyword: Undrained shear strength of clay

Search Result 112, Processing Time 0.02 seconds

The Undrained Shear Strength Characteristics of Mixed Soil with Oyster Shells (굴패각 혼합토의 비배수 전단강도 특성)

  • 송영진;김기영;문홍득
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.7-14
    • /
    • 2003
  • In this study, undrained shear test was performed$K_o$ consolidation in order to study the shear strength characteristics of oysters-marine clay mixtures for three mixed ratios(0%, 25% and 50%). And, in order to study shear strength characteristics of oysters-marine clay mixtures, three different effective vertical stresses(200, 300 and 400kPa) were applied for the $K_o$ consolidation tests. In addition three different axial strain rates(0.005%/min, 0.05%/min, 0.5%/min) were applied for the case of effective vertical stress, 300kPa. According to experimental results, the more mixed ratios were increased, the more deviator stress was increased by crushing effect of oysters particles. especially, when effective vertical stress is 300kPa and mixed ratio increase from 25% to 50%, Test shows the increase of shear strength. But axial strain rate was not effect on the undrained shear strength. In the comparison and analysis that are based on the values of tests on the oysters-marine clay mixtures and the Mayne & Bishop's empiric formula, the undrained shear strength ratio shows a similar pattern of the tests. But for the prediction of the coefficient of the pore water pressure, the value of empiric formula shows more overestimated than the values of the tests at 0%, mixture ratio.

A Reliability Analysis on Sliding of Offshore Gravity Platform (중력식 해양구조물의 활훈에 대한 신뢰도해석)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.37-50
    • /
    • 1986
  • The uncertainties encountered in the stability analysis for the foundation of offshore structures on clay are formulated in probabilistic terms and used to evaluate the reliability of the foundation design. The major sources of uncertainty are: soil properties, f.ave loads, and methods of analysis. The major part of the uncertainty in safety factor is contributed by the uncertainty in the undrained shear strength. All sources of uncertainties that affect the shear strength of clay are modeled and systematically analyzed. The in situ undrained shear strengths are evaluated by laboratory tests and cone penetration tests. The undrained shear strengths from the laboratory test and CPT, respectively at Statfjord B site in the North Sea, are used as an example in risk analysis. Using the CPT alone, the failure probability on sliding of gravity platform at Statfjord B is much larger than the failure probability using the laboratory undrained shear strengths. The major uncertainty of using the CPT as the estimate of th2 undrained shear strength of clay results from the correlation between the cone resistance and the undrained shear strength.

  • PDF

Effect of Consolidation Methods on Shear Strength of Normally Consolidated Clay (정규압밀잡토의 비배수전단강도에 미치는 압밀방법의 영향)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1987
  • Although natural soil deposits hat.e been consolidated under Ko-stress system, the soil behavior has been predicted in laboratory from the results of tests performed on specimens consolidated under an isotropic stress s).stem. A series of undrained triaxial compression tests are performed on remolded specimens of clay consolidated under both types of stress systems, and the results at.e compared. One dimensional consolidation history induces anisotropy in clalrs, which is called as the stress induced anisotropy. However, if the clays would be reconsolidated under isotropic stress system. the anisotropy of undrained stress비h would be decreased with decrease of overconsolidation ratio. Undrained shear strength of norma]Iy consolidated clay depends on consolidation methods. Both the Rutledge hypothesis and the study of Henkel and Sowa do not agree with the test results obtained in this paper. In addition, a new theory is explained about the relationships between consolidation stresses, water contents and undiained shear strength.

  • PDF

Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • 변위용;김영상;이승래;정은택
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.17-25
    • /
    • 2004
  • The flat dilatometer test (DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indices - material index $(I_D)$, horizontal stress index $(K_D)$, and dilatometer modulus (E$_{D}$) and the undrained shear strength has been estimated merely using the horizontal stress index $(K_D)$. In this paper, the applicability of the flat dilatometer to Korean soft clay deposit has been investigated. Then an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0, p_1, p_2, {\sigma '}_v$ and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

A Study on Improvement of Marine Clay through the Leaching Effect of Electrolyte Reaction in Electrode (전극의 전기분해 용출을 통한 해성점토의 개량에 관한 연구)

  • Han, Sang-Jae;Kim, Soo-Sam;Kim, Jong-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.89-98
    • /
    • 2006
  • In this study, the iron and aluminium electrode was put in marine clay which was taken from south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitation which was developed by electrode decomposition. For raising the cementation rate and reducing treatment time, high electric current( 2.5A) was applied in each electrode at semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. The iron electrode decomposition test results show that the water content adjacent to anode section decreased in 35% and increased in 13% at cathode section. The measured shear strength however, was increased considerably comparing to initial shear strength because of cementation effect between iron ions and soil particles. In case of aluminium electrode decomposition test, the distribution of measured shear strength and degree of improvement were more homogeneous than iron electrode decomposition test.

Application of flat DMT and ANN for reliable estimation of undrained shear strength of Korean soft clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • Byeon, Wi-Yong;Kim, Young-Sang;Lee, Seung-Rae;Jeong, Eun-Taeg
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.154-161
    • /
    • 2004
  • The flat dilatometer test(DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indicesmaterial index($I_p$), horizontal stres index($K_p$), and dilatometer modulus($E_p$) and the undrained shear strength is estimated only by using the horizontal stress index($K_D$). In this paper, an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0,\;p_1,\;p_2,\;{\sigma}'_v_0$, and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

  • PDF

Effects of Anisotropic Consolidation on the Postcyclic Undrained Shear Strength of an Overconsolidated Clay (이방압밀이 반복하중을 받은 과압밀점토의 비배수전단강도에 미치는 영향)

  • Gang, Byeong-Hui;Yun, Hyeong-Seok;Park, Dong-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.37-48
    • /
    • 1998
  • The effects of consolidation stress history including consolidation stress ratio, OCR and cyclic loading with drainage on the undrained shear strength of cohesive soil were investig toted. The ratio$(S_u/\sigma'_{vc})ckou/(S_U/\sigma_{vc})cuv$ was observed to increase with increasing OCR. The equation (1) in this paper by Mayne(1980) for the undrained shear strength of the overconsolidated clay and the equation (4) by Yasuhara(1994), for the postcyclic shear strength were found to be relatively well applicable in the case of Kofonsolidated. It was also suggested that the value of the critical state pore pressure parameter As in these two equations for the in situ shear strength of lightly overconsolidated clay(OCR< 3) be obtained by the standard consolidating test.

  • PDF

A Study on Undrained Shear Strength Characteristic of Pusan Clay (부산 점토의 비배수전단강도 특성에 관한 연구)

  • Ryu, Woongryul;Byun, Yoseph;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2010
  • In the downstream areas of the Nakdong river, Pusan clays are commonly found and thickness may reach to maximum of 100m. From geological point of view, Pusan clay are characterized as holocene clays, deposited for approximately 20,000 years ago. Recently, there have been many construction projects based on these soft ground areas. It is needed to know clearly soil properties of the areas for design and safety analysis, especially undrained shear strength of soft clays. However, Pusan clay have not been studied systematically because the clay layers are usually very deep, having high sensitivity characteristic. In this study, undisturbed UD samples obtained from the downstream areas of the Nakdong river were researched using laboratory tests (CthUE, CKcUC, CIUC, UU and UC) and in-situ tests (Field Vane, CPTu). The undrained shear strength characteristics of the samples were depicted using stress-strain relationship.

Shear Strength of Intermediate Soils with Different Types of Fines and Sands

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • In this paper, a series of monotonic undrained shear tests were carried out on four kinds of sand-fine mixtures with various fines content. Two kinds of sands (Silica sand V3, V6) and fines (Iwakuni natural clay, Tottori silt) were mixed together in various proportions, while paying attention to the void ratio expressed in terms of sand structure $(F_c{\leq}F_{cth})$. The undrained shear strength of mixtures below the threshold fines content was observed so that as the plastic fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. For non-plastic fines, the increase in the amount of fines leads to an increase in density of the soil, which results in an increase in strength. Then, the monotonic shear strength of the mixtures was estimated using the concept of granular void ratio. It was found that the shear strength of mixtures is greatly dependent on the skeleton structure of sand particles.