• Title/Summary/Keyword: Underwater shape

Search Result 147, Processing Time 0.024 seconds

Development of a 3D Localization Algorithm Using Hull Geometry Information (선체 형상 정보를 활용한 3차원 위치인식 알고리즘 개발)

  • Mingyu Jang;Jinhyun Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.300-306
    • /
    • 2023
  • A hull-cleaning robot sticks to the surface of a vessel and moves for efficient cleaning. Precise path planning and tracking using the current position is crucial. Many robots rely on the INS algorithm, but errors accumulate. To fix this, GPS, sonar, and USBL are used, though with limitations. Selecting suitable sensors for the surface operation and accurate positioning algorithm are vital. In this study, we developed a robot position estimation algorithm using the structure of a ship. Problems that arise when expanding the 2D position estimation algorithm used in existing wall structures to 3D were evaluated and methods for solving them were proposed. In addition, we aimed to improve performance by deriving singularities that exist in the robot path and proposing an error correction algorithm based on the singularities.

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

Development of Ultrasonic Sensor to Measure the Distance in Underwater (수중 거리 측정을 위한 초음파 센서의 개발)

  • Kim, Chi-Hyo;Kim, Tae-Sung;Jung, Jun-Ha;Lee, Jin-Hyung;Lee, Min-Ki;Jang, In-Sung;Shin, Chang-Joo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.293-298
    • /
    • 2013
  • This research develops an ultrasonic sensor to measure the distance in underwater. The ultrasonic transducer transmits an acoustic signal to an object and receives the echo signal reflected from the object. The ultrasonic driver calculates a distance by multiplying the acoustic speed to the time of flight(TOF) which is the time necessary for the acoustic signal to travel from the transducer to the object. We apply a thresholding and a cross correlation methods to detect the TOF and show their results. When an echo pulse is corrupted with noise and its shape is distorted, the cross correlation method is used to find the TOF based on the maximum similarity between the reference and the delayed echo signals. The echoes used for the reference signal are achieved at the different environments, which improves the performance of the sensor. This paper describes the driver of the acoustic sensor and analyzes the performance of sensors in different measurement environments.

  • PDF

UUV Platform Optimal Design for Overcoming Strong Current

  • Kim, Min-Gyu;Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Li, Ji-Hong;Kim, Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.434-445
    • /
    • 2021
  • This paper proposes an optimal design method for an unmanned underwater vehicle (UUV) platform to overcome strong current. First, to minimize the hydrodynamic drag components in water, the vehicle is designed to have a streamlined disc shape, which help maintaining horizontal motion (zero roll and pitch angles posture) while overcoming external current. To this end, four vertical thrusters are symmetrically mounted outside of the platform to stabilize the vehicle's horizontal motion. In the horizontal plane, four horizontal thrusters are symmetrically mounted outside of the disc, and each of them has the same forward and reverse thrust performances. With these four thrusters, a specific thrust vector control (TVC) method is proposed, and for external current in any direction, four horizontal thrusters are controlled to generate a vectored thrust force to encounter the current while minimizing the vehicle's rotation and maintaining its heading. However, for the numerical simulations, the vehicle's hydrodynamic coefficients related to the horizontal plane are derived based on both theoretical and empirically derived formulas. In addition to the simulation, experimental studies in both the water tank and circulating water channel are performed to verify the vehicle's various final performances, including its ability to overcome strong current.

Energy harvesting characteristics on curvature based PVDF cantilever energy harvester due to vortex induced vibration (곡면을 가진 외팔보형 PVDF 에너지 하베스터의 와류유기진동으로 인한 에너지 수확 특성)

  • Woo-Jin Song;Jongkil Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.168-177
    • /
    • 2024
  • When designing an underwater Piezoelectric Energy Harvester (PEH), Vortex Induced Vibration (VIV) is generated throughout the cantilever through a change in curvature, and the generation of VIV increases the vibration displacement of the curved cantilever PEH, which is an important factor in increasing actual power. The material of the curved PEH selected a Polyvinyline Di-Floride (PVDF) piezoelectric film, and the flow velocity is set at 0.1 m/s to 0.50 m/s for 50 mm, 130 mm, and 210 mm with various curvatures. The strain energy change of PEH by VIV was observed. The smaller the radius of curvature, the larger the VIV, and as the flow rate increased, more VIV appeared. Rapid shape transformation due to the small curvature was effective in generating VIV, and strain energy, normalized voltage, average power, etc. To increase the amount of power of the PEH, it is considered that the average power will increase as the number of curved PEHs increases as well as the steep curvature is improved.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine-III -Underwater Geometry of the Prototype Net- (기선권현망어업의 어구 개량과 자동화 조업시스템 개발-III - 실물어구의 수중형상 -)

  • 장충식;김용해;안영수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.267-274
    • /
    • 2001
  • A prototype experiment on the anchovy boat seine was carried out in the southern sea of korea to analyze the vertical opening and the underwater geometry. The vertical opening and the underwater geometry of the prototype net were determined by distance of Minilog position with the combinations of the distance between paired boats and the towing speed. The results osbtained can be summarized as follows; 1. Vertical opening of the protype net was gradually lowered according to the increase of the distance between paired beats and the towing speed. 2. Vertical opening of Wing net, Inside wing net, Square, Fore bag net, Flapper and After bag net of the prototype net according to the distance between paired boats were varied in the range of 8.4~9.0, 15.7~17.4, 12.9~17.9, 13.6~19.0, 8.3~8.4, 11.1~14.7m respectively, varied in the range of 12~16, 22~24, 27~38, 59~83, 92~93, 41~54% of the normal opening respectively. 3. Vertical opening of Wing net, In side wing net, Square, Fore bag net, Flapper and After bag net of the prototype net according to the towing speed were varied in the range of 7.7~10.5, 19.6~21.6, 12.2~16.9, 15.4~17.1, 8.0~8.2, 13.7~14.7m respectively, varied in the range of 14~19, 27~30, 32~36, 67~74, 89~91, 51~54% of the normal opening respectively. 4. Prototype net was appeared apparent the pocket shape, because Wing net and Inside wing net was opened 20% of the normal opening. 5. Working depth of the prototype net was gradually shallow according to the increase of the distance between paired boats and the towing speed.

  • PDF

A Study on the Creation and Use of Nokgakseong and Underwater Wooden Fence (조선시대 녹각성과 수중목책의 조성 및 활용에 관한 연구)

  • SHIM Sunhui;KIM Choongsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.230-246
    • /
    • 2023
  • The wooden fence(木柵), which began to appear in the Bronze Age and is presumed to be the oldest defense facility in human history, was used as a fortress for the purpose of further strengthening military defense functions until after the Japanese Invasion of Korea in 1592 in the Joseon Dynasty(壬辰倭亂). As it was established as the concept of a fortress or a fence installed outside a fence castle(城柵) or barracks fence(營柵), its importance as an essential facility for defense was further highlighted. This study is the result of exploring wooden fence that were used as official facilities during the Joseon Dynasty, focusing on literature surveys such as 『Annals of the Joseon Dynasty』 and 『New Jeungdonggukyeojiseungram』 In this study, in particular, the conclusion of this study is as follows, focusing on the use and function of Nokgakseong(鹿角城), underwater wooden fence, installation methods, and materials of wooden fences, is as follows. The conclusions of this study, which focused on the materials of the wooden fence, are as follows. First, as invasions by foreign enemies became more frequent in the late Goryeo and early Joseon Dynasty, wooden fences played a major role as a major out-of-castle defense facility((防禦施設). In addition, wooden fences were modified and installed into various types such as wooden fences(木柵城), Nokgakseong, a fence made up of large branches in the shape of a deer antler, and underwater wooden fences(水中木柵) according to the circumstances of the times, government policy, and location environment. Second, wooden fences were installed in strategic locations in defense facilities for military purposes, such as mountain fortress(山城), fortresses(營), camps(鎭), forts(堡), and castles(邑城) in strategic locations, and were used for defense in case of emergency. According to the urgency of farming, it was installed in accordance with the non-farming season, when it is easy to mobilize manpower to avoid the busy farming season. The size of the wooden fence of the Joseon Dynasty, which are confirmed through literature records, was converted into Pobaekchuk(布帛尺), and the circumference was very diverse from 4,428chuk(2,066m) to 55chuk(25m). Third, Nokgakseong is an efficient combat support facility that is more aggressive than a general wooden fence, and the records of Nokgakseong in the Annals of the Joseon Dynasty appeared during the King Sejong period the record was 20 times, the most. By region, it was found that it was mainly installed in coastal rugged areas such as Pyeongan and Hamgildo(12), which are the 6-jin areas of the 4th Army. Fourth, in the early 15th century, as the royal court established a maritime defense strategy for the coastal area of the southern coast, after the Sampo Invasion(三浦倭亂), riots by Japanese settlers in Sampo in 1510, major military posts including eupseong(邑城), camps, and forts were established. The installation of underwater barriers around various government facilities rapidly increased as a defense facility to block the warships of Japanese pirates around various government facilities. Fifth, between the 15th and 17th centuries before and after the Japanese Invasion of Korea in Sampo, underwater fences were installed in the Southern coast and Ganghwa Island. In particular, in the 15th century, underwater fences were intensively installed in coastal areas of Gyeongsangnam-do, such as Jepo. Pine trees and Oaks are the main materials used for underwater fences, but other materials such as Oldham's meliosma, Loose-flower hornbeam and The vines of arrowroots were also used as materials for wooden fences.

Buckling failure of cylindrical ring structures subjected to coupled hydrostatic and hydrodynamic pressures

  • Ping, Liu;Feng, Yang Xin;Ngamkhanong, Chayut
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.345-360
    • /
    • 2021
  • This paper presents an analytical approach to calculate the buckling load of the cylindrical ring structures subjected to both hydrostatic and hydrodynamic pressures. Based on the conservative law of energy and Timoshenko beam theory, a theoretical formula, which can be used to evaluate the critical pressure of buckling, is first derived for the simplified cylindrical ring structures. It is assumed that the hydrodynamic pressure can be treated as an equivalent hydrostatic pressure as a cosine function along the perimeter while the thickness ratio is limited to 0.2. Note that this paper limits the deformed shape of the cylindrical ring structures to an elliptical shape. The proposed analytical solutions are then compared with the numerical simulations. The critical pressure is evaluated in this study considering two possible failure modes: ultimate failure and buckling failure. The results show that the proposed analytical solutions can correctly predict the critical pressure for both failure modes. However, it is not recommended to be used when the hydrostatic pressure is low or medium (less than 80% of the critical pressure) as the analytical solutions underestimate the critical pressure especially when the ultimate failure mode occurs. This implies that the proposed solutions can still be used properly when the subsea vehicles are located in the deep parts of the ocean where the hydrostatic pressure is high. The finding will further help improve the geometric design of subsea vehicles against both hydrostatic and hydrodynamic pressures to enhance its strength and stability when it moves underwater. It will also help to control the speed of the subsea vehicles especially they move close to the sea bottom to prevent a catastrophic failure.

Measurement of the Shape in the Radioactive Area by Ultrasonic Wave Sensor

  • Park, Koon-Nam;Sim, Chuel-Muu;Park, Chang-Oong;Lee, Chang-Hee;Park, Jong-Hark
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.927-934
    • /
    • 2002
  • The HANARO ( High-flux Advanced Neutron Application Reactor) has been operated since 1995. The Cold Neutron (CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure exactly the size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersed ultrasonic technique is considered as the best way to measure the thickness and the diameter of the CN hole. The 4-Axis manipulator was designed and fabricated for locating the ultrasonic sensors. The transducer of an ultrasonic sensor having 10 MHz frequency leads to high resolution as much as 0.03mm. The inside diameter and thickness of 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results show that the thickness and inside diameter of the CN hole is in the range of 3.3∼6.7mm and 156∼ 165mm, respectively. This data will be a good reference for the design of the cold neutron source facility.