DOI QR코드

DOI QR Code

Energy harvesting characteristics on curvature based PVDF cantilever energy harvester due to vortex induced vibration

곡면을 가진 외팔보형 PVDF 에너지 하베스터의 와류유기진동으로 인한 에너지 수확 특성

  • 송우진 (현대자동차(주) 글로벌 러닝센터) ;
  • 이종길 (국립안동대학교 사범대학 기계교육과)
  • Received : 2023.12.20
  • Accepted : 2024.02.01
  • Published : 2024.03.31

Abstract

When designing an underwater Piezoelectric Energy Harvester (PEH), Vortex Induced Vibration (VIV) is generated throughout the cantilever through a change in curvature, and the generation of VIV increases the vibration displacement of the curved cantilever PEH, which is an important factor in increasing actual power. The material of the curved PEH selected a Polyvinyline Di-Floride (PVDF) piezoelectric film, and the flow velocity is set at 0.1 m/s to 0.50 m/s for 50 mm, 130 mm, and 210 mm with various curvatures. The strain energy change of PEH by VIV was observed. The smaller the radius of curvature, the larger the VIV, and as the flow rate increased, more VIV appeared. Rapid shape transformation due to the small curvature was effective in generating VIV, and strain energy, normalized voltage, average power, etc. To increase the amount of power of the PEH, it is considered that the average power will increase as the number of curved PEHs increases as well as the steep curvature is improved.

수중 압전 에너지 하베스터(Piezoelectric Energy Harvester, PEH) 설계시 곡률변화를 통해 외팔보형 전체의 와류유기진동(Vortex Induced Vibration, VIV)을 생성시키고, VIV의 생성으로 곡면형 외팔보 PEH에 진동 변위가 증가한다는 것은 실제 전력을 증대 시키는 데 중요한 요소이다. 해석 모델인 곡면형 PEH의 재질은 Polyvinyline Di-Floride(PVDF) 압전 필름으로서 곡률이 다양한 50 mm, 130 mm, 210 mm 모델에 유속은 0.1 m/s ~ 0.50 m/s로 정하여 VIV에 의한 PEH의 스트레인 에너지 변화를 관찰하였다. 곡률 반경이 작을수록 큰 폭의 VIV가 나타났고, 유속이 증가할수록 VIV가 많이 나타났다. 작은 곡률로 인한 급격한 형상변환이 VIV의 생성에 효과적이었고 스트레인 에너지, 정규화 발생 전압, 평균 전력 등은 곡률이 증가할수록 감소하였다. PEH 자체의 전력량을 증대시키기 위해 급한경사의 곡률 개선뿐만 아니라 곡률형 PEH의 개수가 늘어남에 따라 평균 전력도 상승할 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2023년 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(협약번호 KRIT-CT-23-026).

References

  1. N. K. Singh and S. Datta, "Review of piezoelectric energy harvesting based on vibration," Advanced Research in Electrical and Electronic Engineering, 1, 74-78
  2. H. Kim, J.-H. Kim, and J. Kim, "A review of piezoelectric energy harvesting based on vibration," Int. J. of Precision Mech. Eng. 12, 1129-1141 (2011).
  3. A. Erturk and D. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, Ltd.., West Sussex, 2011), pp. 1-73.
  4. J. Lee, J. Ahn, H. Jin, C. Lee, Y. Jeong, K. Lee, H. Seo, and Y. Cho, "A funnel type PVDF underwater energy harvester with spiral structure mounted on the harvester support," Micromachines, 13, 579 (2022).
  5. H. S. Yoon, G. Washington, and A. Danak, "Modeling, optimization, and design of efficient for energy harvesting applications," J. Intell. Mater. Syst. Struct. 16, 877-888 (2005).
  6. A. H. Techet, J. J. Allen, and A. J. Smits, "Piezoelectric eels for energy harvesting in the ocean," Proc. ISOPE, 713-718 (2002).
  7. J. J. Allen and A. J. Smits, "Energy harvesting eel," J. Fluids Struct. 15, 629-640. (2001).
  8. A. Giacomello and M. Porfiri, "Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites," J. Appl. Phys. 109, 084903 (2011).
  9. B. Ren, S. W. Or, X. Zhao, and H. Luo, "Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal," J. Appl. Phys. 107, 034501 (2010).
  10. H. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. Newnham, and H. Hofmann. "Energy harvesting using a piezoelectric 'cymbal' transducer in dynamic environment," J. Appl. Phys. 43, 6178-6183 (2004).
  11. L. Bezanson and J. Thornton, "Utilizing deep ocean currents to power extended duration sensors," IEEE, 1-8 (2010).
  12. A. Erturk and G. Delporte, "Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms," Smart Mater. Struct. 20, 125013 (2011).
  13. X. Shan, R. Song, B. Liu, and T. Xie, "Novel energy harvesting: a macro fiber composite piezoelectric energy harvester in the water vortex," Ceram. Int. 41, 5763-5767 (2015).
  14. R. Song, X. Shan, F. Lv, and T. Xie, "A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension," Ceram. Int. 41, S768-S773 (2015).
  15. H. Dai, A. Abdelkefi, and L. Wang, "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations," J. Intell. Mater. Syst. Struct. 25, 1-14
  16. A. Mehmood, A. Abdelkefi, A., M. Hajj, A. Nayfeh, I. Akhtar, and A. Nuhait, "Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder," J. Sound Vib. 332, 4656-4667 (2013).
  17. K. Singh, S. Michelin, and E. de Langre, "Energy harvesting from axial flow induced instabilities in slender structures," Proc. Int. Conf. FIV. 735-742 (2012).
  18. C. Grouthier, S. Michelin, and E. de Langre, "Optimal energy harvesting by vortex-induced vibrations in cables," Proc. Int. Conf. FIV. 291-298 (2012).
  19. C. Dung and E. Sasaki, "Numerical simulation of output response of PVDF sensor attached on a cantilever beam subjected to impact loading," Sensors, 16, 601 (2016).
  20. J. Qiu, H. Jiang, H. Ji, and K. Zhu, "Comparison between four piezoelectric energy harvesting circuits," Front. Mech. Eng. China, 4, 153-159 (2009).
  21. A. Tabesh and L. Frechette, "A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator," IEEE Trans. Ind. Electron. 57, 840-849 (2009).
  22. Y. Kushino and H. Koizumi, "Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor," Proc. ECCE, 2310-2315 (2014).