• 제목/요약/키워드: Underwater equipment

검색결과 153건 처리시간 0.024초

Dynamic modeling and three-dimensional motion simulation of a disk type underwater glider

  • Yu, Pengyao;Wang, Tianlin;Zhou, Han;Shen, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.318-328
    • /
    • 2018
  • Disk type underwater gliders are a new type of underwater gliders and they could glide in various directions by adjusting the internal structures, making a turnaround like conventional gliders unnecessary. This characteristic of disk type underwater gliders makes them have great potential application in virtual mooring. Considering dynamic models of conventional underwater gliders could not adequately satisfy the motion characteristic of disk type underwater gliders, a nonlinear dynamic model for the motion simulation of disk type underwater glider is developed in this paper. In the model, the effect of internal masses movement is taken into consideration and a viscous hydrodynamic calculation method satisfying the motion characteristic of disk type underwater gliders is proposed. Through simulating typical motions of a disk type underwater glider, the feasibility of the dynamic model is validated and the disk type underwater glider shows good maneuverability.

수중 통신 장비를 위한 검사기 설계와 구현에 관한 연구 (A Study on Design and Implementation of a Test System for Underwater Communication Equipment)

  • 윤현태;석종원
    • 한국군사과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.42-48
    • /
    • 2019
  • Since the underwater telephone was sold in a short time, there are few repair equipments. And equipment is difficult to locate fault. Equipment with transducers must be inspected underwater, and a relative naval vessels is required to perform an operational check. So we developed a tester device to test the transmission card through the spectrum and transmission power, and to develop a device that can conduct operational tests on land. Therefore, the development of the tester reduces the incidence of naval vessels and contributes to the development of domestic underwater communication test equipment.

수중 고르기 장비의 건설 공정 및 효율성 분석 (Investigation on Construction Process and Efficiency of Underwater Construction Equipment for Rubble Mound Leveling works)

  • 원덕희;장인성;신창주
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.372-378
    • /
    • 2016
  • 항만 구조물인 케이슨 및 블록 등을 수중에 거치하기 위해서는 기초사석을 투하하고 이 위에 구조물을 설치한다. 이때 기초 사석은 상구구조물을 지지하기 위한 기초 토대로서 사석의 규격, 비중, 중량 모양 및 치수 등이 균일하고 치밀하여야 하며 선정시험을 통과한 사석만을 사용하여 시공하야 한다. 또한 이러한 기초 사석을 고르게 만들어 주는 작업 구조물의 거치 이전에 반드시 이루어 져야 한다. 본 연구에서는 수중 고르기 작업 공정의 무인화를 위하여 수중 고르기 및 굴삭용 무인기계 뿐만 아니라 무인기계화 시공을 위한 원격제어용 운영시스템, 수중 물체 인식 및 수중위치 분석을 위한 수중 환경 모니터링 시스템이 개발되었다. 본 장비는 육상 및 수중 테스트를 통하여 검증을 완료 하여 우수한 성능을 확인하였다. 그러나 현장에 본 장비를 투입하기 위해서는 성능뿐만 아니라 건설 공정의 제안 및 분석 그리고 효율(경제성)이 분석되어야 한다. 본 연구에서는 수중고르기장비의 성능 및 기능, 건설공정절차, 기존의 공법과의 비교 분석하였다. 분석결과 기존의 잠수부를 투입하는 건설공법에 비하여 경제성, 효율성, 안전성이 향상되는 것으로 확인되었다.

탁도가 높은 수중작업현장에 사용 가능한 소나시스템의 성능 분석 (Performance Analysis of Sonar System Applicable to Underwater Construction Sites with High Turbidity)

  • 신창주;장인성;김기훈;최현택;이승현
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4507-4513
    • /
    • 2013
  • 수중사석고르기와 같은 수중공사작업을 수행하기 위하여 개발 진행 중인 무인수중장비를 수중공사현장에 투입할 경우, 작업 시 발행하는 부유물들로 인하여 탁도가 높아진다. 이러한 수중환경에서 광학카메라를 이용할 경우, 수중전방인식이 불가능할 수 있다. 이를 극복하기 위하여 무인수중장비에 소나를 탑재하고자 한다. 소나를 무인수중 장비에 적용하기에 앞서, 본 연구에서는 소나의 분해능, 탁도가 높은 물 속에서 스캐닝한 소나이미지를 확인하여 장비의 성능을 분석하였다. 그리고 수중공사현장의 경계면을 표시하기 위한 방법을 제안하였다. 이를 통하여 무인수중 장비에 적용하기 위한 소나의 기초 성능을 확인하였다.

Dynamics Modeling and Behavior Analysis of Underwater Glider System

  • Nam, Keon-Seok;Kim, Donghee;Choi, Hyeung-Sik;Lee, Shin-je;Kim, Joon-Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.25-31
    • /
    • 2017
  • Generally, underwater gliders do not have separate propellers for their forward movement. They derive a propulsive force due to the difference between their buoyancy and gravity. The attitude of an underwater glider is controlled by changing the relative position of the buoyancy center and mass center. In this study, we derived nonlinear 6-DOF dynamic and mathematical models for the motion controller and buoyancy controller. Using these equations, we performed dynamic underwater glider simulations and verified the suitability of the design and dynamic performance of the proposed underwater glider.

Off-Site Distortion and Color Compensation of Underwater Archaeological Images Photographed in the Very Turbid Yellow Sea

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • 보존과학회지
    • /
    • 제38권1호
    • /
    • pp.14-32
    • /
    • 2022
  • Underwater photographing and image recording are essential for pre-excavation survey and during excavation in underwater archaeology. Unlike photographing on land, all underwater images suffer various quality degradations such as shape distortions, color shift, blur, low contrast, high noise levels and so on. Outcome is very often heavily photographing equipment and photographer dependent. Excavation schedule, weather conditions, and water conditions can put burdens on divers. Usable images are very limited compared to the efforts. In underwater archaeological study in very turbid water such as in the Yellow Sea (between mainland China and the Korean peninsula), underwater photographing is very challenging. In this study, off-site image distortion and color compensation techniques using an image processing/analysis software is investigated as an alternative image quality enhancement method. As sample images, photographs taken during the excavation of 800-year-old Taean Mado Shipwrecks in the Yellow Sea in 2008-2010 were mainly used. Significant enhancement in distortion and color compensation of archived images were obtained by simple post image processing using image processing/analysis software (PicMan) customized for given view ports, lenses and cameras with and without optical axis offsets. Post image processing is found to be very effective in distortion and color compensation of both recent and archived images from various photographing equipment models and configurations. Merits and demerit of in-situ, distortion and color compensated photographing with sophisticated equipment and conventional photographing equipment, which requires post image processing, are compared.

Survey of Acoustic Frequency Use for Underwater Acoustic Cognitive Technology

  • Cho, A-ra;Choi, Youngchol;Yun, Changho
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.61-81
    • /
    • 2022
  • The available underwater acoustic spectrum is limited. Therefore, it is imperative to avoid frequency interference from overlapping frequencies of underwater acoustic equipment (UAE) for the co-existence of the UAE. Cognitive technology that senses idle spectrum and actively avoids frequency interference is an efficient method to facilitate the collision-free operation of multiple UAE with overlapping frequencies. Cognitive technology is adopted to identify the frequency usage of UAE to apply cognitive technology. To this end, we investigated two principle underwater acoustic sources: UAE and marine animals. The UAE is classified into five types: underwater acoustic modem, acoustic positioning system, multi-beam echo-sounder, side-scan sonar, and sub-bottom profiler. We analyzed the parameters of the frequency band, directivity, range, and depth, which play a critical role in the design of underwater acoustic cognitive technology. Moreover, the frequency band of several marine species was also examined. The mid-frequency band from 10 - 40 kHz was found to be the busiest. Lastly, this study provides useful insights into the design of underwater acoustic cognitive technologies, where it is essential to avoid interference among the UAE in this mid-frequency band.

수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구 (Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application)

  • 황준필;이호재;권홍규
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

해저 표준관입시험 장비의 밀폐형 항타부 CFD 해석 (CFD Analysis of Underwater Standard Penetration Test Equipment)

  • 고진환;장인성;김우태;권오순;백원대
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.33-38
    • /
    • 2012
  • In our study, a closed-type penetration unit for standard penetration test (SPT) equipment was developed in order to operate in an underwater environment. This type causes energy dissipation, mainly due to the small gap between an airtight case and moving hammer. The dissipation was estimated through a CFD analysis. The computed dissipated energy was less than 1.2% compared to the potential energy of the hammer with the given gap. Subsequently, the impact energy of the underwater SPT equipment was within 1.2% of that for the SPT equipment on land.