• Title/Summary/Keyword: Underwater Sensor Network

Search Result 99, Processing Time 0.034 seconds

Transmission Performance of Application Traffic on Underwater MANETs (수중 MANET에서 응용 트래픽의 전송 성능)

  • Kim, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.557-560
    • /
    • 2013
  • MANTET(Mobile Ad-Hoc Networks), which is configured and operated by each terminals with no support of communication infra-structures, is recently expanded its application fields from terrestrial communications to underwater environments with technical advances of Wi/Fi and minimized portable terminals. Underwater sensor network, undersea environment explorations and probes, information transmission for underwater area, etc., is typical application fields of underwater MANET. Especially, Performance measurement and analysis on this application fields is one of important research area and base of design, implementation and operation for underwater MANET. However, the research results are focued on various transmission parameters on network level, and its objects of analysis are also performance of network level. In this paper, transmission performances for application levels are measured and analyzed for user levels on underwater MANET. In this study, voice traffic is assumed as object application traffic, computer simulation which is based on NS-2 having additional implemented functions for underwater communications is used. on some defined scale of MANET, transmission performances according to varying traffic environments are measured and analyzed, operation conditions on underwater MANET is suggested with the analysis.

  • PDF

A Recovery Scheme of a Cluster Head Failure for Underwater Wireless Sensor Networks (수중 무선 센서 네트워크를 위한 클러스터 헤드 오류 복구 기법)

  • Heo, Jun-Young;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.17-22
    • /
    • 2011
  • The underwater environments are quite different from the terrestrial ones in terms of the communication channel and constrains. In underwater wireless sensor network, the probability of node failure is high because sensor nodes are deployed in more harsh environments than the ground based networks and moved by waves and currents. There are researches considering the communication environments of underwater to improve the data transmission throughput. In this paper, we present a checkpointing scheme of the cluster heads that recoveries from a cluster head failure quickly. Experimental results show that the proposed scheme enhances the reliability of the networks and more efficient in terms of the energy consumption and the recovery latency than without checkpointing.

A MAC Protocol for Underwater Acoustic Sensor Networks (수중 음파 센서 네트워크를 위한 매체접근제어 프로토콜)

  • Jang, Kil-Woong
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.337-344
    • /
    • 2008
  • Underwater acoustic sensor networks exhibit characteristics such as high propagation delay and low data rates, which are different from those of terrestrial wireless networks. Therefore, the conventional protocols used in wireless networks can be restrictive and inefficient when applied to underwater acoustic sensor networks. In this paper, we propose a medium access control protocol (MAC) to enhance the energy efficiency and throughput in underwater acoustic sensor networks. The proposed protocol employs a slot-based competition mechanism that reserves a time slot to send a data packet in advance. In the proposed protocol, collision between nodes can occur due to competition to obtain a slot. However, the proposed protocol minimizes the collisions between nodes because the nodes store the reservation information of the neighboring nodes, this reduces unnecessary energy consumption and increases throughput. We perform a simulation to evaluate the performance of the proposed protocol with regard to the energy consumption, the number of collision, channel utilization, throughput and transmission delay. We compare the proposed protocol with the conventional protocol, and the performance results show that the proposed protocol outperforms the conventional protocol.

Expression Power Anlaysis among the Existing Event Represent Methods based on Event Representation Components (이벤트 표현 구성요소 기반의 기존 이벤트 표현 방법들의 표현력 분석)

  • Seong, Cheol-Je;Kim, Changhwa;Park, Soo-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.361-364
    • /
    • 2013
  • 이벤트란 객체 상태 변화에 따른 상황 변화를 의미한다. 이벤트를 표현할 때 어떤 요소들을 표현하느냐에 따라 유추할 수 있는 정보 내용이 각각 달라진다. 본 논문은 일반적인 이벤트 표현을 위해 필요한 구성요소들을 제안하고 이 구성요소들을 기반으로 기존에 제안된 이벤트 표현 방법들을 분석 비교한다. 본 논문에서 제안한 이벤트 표현 구성요소들은 표현력 측면에서 이벤트 표현 방법들을 분석하고 비교하는데 타당한 기준이 될 수 있고 향 후 이벤트를 표현하거나 추론하는 방법 혹은 언어를 개발하는데 필수적인 요소가 될 수 있다. 또한 논문에서 제시한 기존 이벤트 표현 방법 분석과 비교는 사용자가 이벤트 표현 방법을 선택하는데 있어 좋은 가이드라인이 될 수 있다.

Environment Monitoring System Using RF Sensor (RF 센서를 이용한 해양 환경 관리 시스템)

  • Cha, Jin-Man;Park, Yeoun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.896-898
    • /
    • 2012
  • Recently, many countries are making efforts for the development of ocean resources because the necessity and importance of the ocean resources are increased. Underwater sensor networks have emerged as a very powerful technique for many applications, including monitoring, measurement, surveillance and control and envisioned to enable applications for oceanographic data collection, ocean sampling, environmental and pollution monitoring, offshore exploration, disaster prevention, tsunami and seaquake warning, assisted navigation, distributed tactical surveillance, and mine reconnaissance. The idea of applying sensor networks into underwater environments (i.e., forming underwater sensor networks) has received increasing interests in monitoring aquatic environments for scientific, environmental, commercial, safety, and military reasons. The data obtained by observing around the environment are wireless-transmitted by a radio set with various waves. According to the technical development of the medium set, some parameters restricted in observing the ocean have been gradually developed with the solution of power, distance, and corrosion and watertight by the seawater. The actual matters such as variety of required data, real-time observation, and data transmission, however, have not enough been improved just as various telecommunication systems on the land. In this paper, a wireless management system will be studied through a setup of wireless network available at fishery around the coast, real-time environmental observation with RF sensor, and data collection by a sensing device at the coastal areas.

  • PDF

A Node Grouping Method for Transmission Power Saving in Underwater Acoustic Sensor Network (수중 센서 네트워크에서 노드 그룹화를 통한 전송전력 절약 방안)

  • Hwang, Sung-Ho;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.774-780
    • /
    • 2009
  • This paper proposes a transmitted power saving method for underwater acoustic sensors considering the acoustic wave propagation characteristic that propagation loss increases more rapidly in higher frequency band. In the proposed scheme, sensor nodes are divided into a few groups based on the distance between sink node and the sensor node, and each group uses its own frequency band. The node group with longer distance uses lower frequency and the node group with shorter distance uses higher frequency. By means of such a distance-dependent frequency allocation, all sensor nodes are able to maintain a certain target signal-to-noise ratio (SNR), but also save transmitted power. In addition, the optimum size of node group is obtained, and also a frequency allocation algorithm is proposed accordingly. Numerical results show that the proposed scheme saves transmitted power by more 10 dB comparing non-grouping methods.

A Hexagon Tessellation Approach for the Transmission Energy Efficiency in Underwater Wireless Sensor Networks

  • Kim, Sung-Un;Cheon, Hyun-Soo;Seo, Sang-Bo;Song, Seung-Mi;Park, Seon-Yeong
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 2010
  • The energy efficiency is a key design issue to improve the lifetime of the underwater sensor networks (UWSN) consisting of sensor nodes equipped with a small battery of limited energy resource. In this paper, we apply a hexagon tessellation with an ideal cell size to deploy the underwater sensor nodes for two-dimensional UWSN. Upon this setting, we propose an enhanced hybrid transmission method that forwards data packets in a mixed transmission way based on location dependent direct transmitting or uniform multi-hop forwarding. In order to select direct transmitting or uniform multi-hop forwarding, the proposed method applies the threshold annulus that is defined as the distance between the cluster head node and the base station (BS). Our simulation results show that the proposed method enhances the energy efficiency compared with the existing multi-hop forwarding methods and hybrid transmission methods

Performance Analysis on Code-Division Multiple Access in Underwater Acoustic Sensor Network (수중 음향 센서 망에서의 코드 분할 다중 접속 기법에 대한 성능 해석)

  • Seo, Bo-Min;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9A
    • /
    • pp.874-881
    • /
    • 2010
  • Acoustic signal, which is a main carrier of underwater communication, attenuates along the traveled path heavily depending on the frequency as well as inter-node distance. In addition, since it has a long propagation delay, the conventional medium access control (MAC) schemes requiring complex signaling procedures and accordingly heavy overhead messages would not be appropriate in underwater communications. In this paper, we propose a code division multiple access (CDMA) scheme as a solution for MAC of underwater communication and evaluate the performance. A hierarchical data-gathering tree topology is considered and a staggered wake-up pattern is employed for the purpose of energy saving. As a performance measure, the data rate at each level of hierarchical topology is derived.

An Energy Efficient Interference-aware Routing Protocol for Underwater WSNs

  • Khan, Anwar;Javaid, Nadeem;Ali, Ihsan;Anisi, Mohammad Hossein;Rahman, Atiq Ur;Bhatti, Naeem;Zia, Muhammad;Mahmood, Hasan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4844-4864
    • /
    • 2017
  • Interference-aware routing protocol design for underwater wireless sensor networks (UWSNs) is one of the key strategies in reducing packet loss in the highly hostile underwater environment. The reduced interference causes efficient utilization of the limited battery power of the sensor nodes that, in consequence, prolongs the entire network lifetime. In this paper, we propose an energy-efficient interference-aware routing (EEIAR) protocol for UWSNs. A sender node selects the best relay node in its neighborhood with the lowest depth and the least number of neighbors. Combination of the two routing metrics ensures that data packets are forwarded along the least interference paths to reach the final destination. The proposed work is unique in that it does not require the full dimensional localization information of sensor nodes and the network total depth is segmented to identify source, relay and neighbor nodes. Simulation results reveal better performance of the scheme than the counterparts DBR and EEDBR techniques in terms of energy efficiency, packet delivery ratio and end-to-end delay.