• Title/Summary/Keyword: Underwater Robotics

Search Result 200, Processing Time 0.027 seconds

Development of P-SURO II Hybrid Autonomous Underwater Vehicle and its Experimental Studies (P-SURO II 하이브리드 자율무인잠수정 기술 개발 및 현장 검증)

  • Li, Ji-Hong;Lee, Mun-Jik;Park, Sang-Heon;Kim, Jung-Tae;Kim, Jong-Geol;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, we present the development of P-SURO II hybrid AUV (Autonomous Underwater Vehicle) which can be operated in both of AUV and ROV (Remotely Operated Vehicle) modes. In its AUV mode, the vehicle is supposed to carry out some of underwater missions which are difficult to be achieved in ROV mode due to the tether cable. To accomplish its missions such as inspection and maintenance of complex underwater structures in AUV mode, the vehicle is required to have high level of autonomy including environmental recognition, obstacle avoidance, autonomous navigation, and so on. In addition to its systematic development issues, some of algorithmic issues are also discussed in this paper. Various experimental studies are also presented to demonstrate these developed autonomy algorithms.

Navigation System of UUV Using Multi-Sensor Fusion-Based EKF (융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계)

  • Park, Young-Sik;Choi, Won-Seok;Han, Seong-Ik;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

Thruster Modeling for Underwater Vehicle with Ambient Flow Velocity and its Incoming Angle (외부 유체의 영향을 고려한 무인잠수정의 추진기 모델)

  • Kim, Jin-Hyun;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.109-118
    • /
    • 2007
  • The thruster is the crucial factor of an underwater vehicle system, because it is the lowest layer in the control loop of the system. In this paper, we propose an accurate and practical thrust modeling for underwater vehicles which considers the effects of ambient flow velocity and angle. In this model, the axial flow velocity of the thruster, which is non-measurable, is represented by ambient flow velocity and propeller shaft velocity. Hence, contrary to previous models, the proposed model is practical since it uses only measurable states. Next, the whole thrust map is divided into three states according to the state of ambient flow and propeller shaft velocity, and one of the borders of the states is defined as Critical Advance Ratio (CAR). This classification explains the physical phenomenon of conventional experimental thrust maps. In addition, the effect of the incoming angle of ambient flow is analyzed, and Critical Incoming Angle (CIA) is also defined to describe the thrust force states. The proposed model is evaluated by comparing experimental data with numerical model simulation data, and it accurately covers overall flow conditions within 2N force error. The comparison results show that the new model's matching performance is significantly better than conventional models'.

  • PDF

Development of a Low-cost Unmanned Underwater Vehicle and Performance Verification (저가 수중 무인 이동체 개발 및 운동성능 검증)

  • Hwang, Dongwook;Jang, Mingyu;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, a high performance underwater vehicle which can be manufactured at low cost is designed and fabricated, and its performance is verified through experiments. To improve efficiency, the Myring equation is used to design the appearance and the duct structure including the thruster is planned to increase the propulsion efficiency while reducing the drag force. Through various methods, it is secured stable waterproof performance, and also is devised to have high speed movement and turning performance. The developed underwater vehicle is equipped with a high output BLDC motor to achieve a linear speed of up to 2 m/s and can change direction rapidly with stability through four rudders. The rudders are driven by coupling a timing belt and a pulley by extending the axis of a servo motor, and are equipped at the end of the body to turn heading. In addition, for stable posture control, the roll keeps its internal center of gravity low and maintains its stability due to restoring force. By controlling the four rudders, pitch and yaw are handled by the PID controller and show stable performance. To investigate the horizontal turning performance, it is confirmed that the yaw rate controller is designed and stable yaw rate control is performed.

Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms (수중로봇팔의 동역학 모델링과 동적 조작도 해석)

  • Jnn Bong-Huan;Lee Jihong;Lee Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

Dynamic Workspace Control of Underwater Manipulator Considering ROV Motion (ROV의 운동이 고려된 수중 로봇팔의 동적 작업공간 구동 제어)

  • Shim, Hyung-Won;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.460-470
    • /
    • 2011
  • This paper presents a dynamic workspace control method of underwater manipulator considering a floating ROV (Remotely Operated vehicle) motion caused by sea wave. This method is necessary for the underwater work required linear motion control of a manipulator's end-effector mounted on a floating ROV in undersea. In the proposed method, the motion of ROV is modeled as nonlinear first-order differential equation excluded dynamic elements. For online manipulator control achievement, we develop the position tracking method based on sensor data and EKF (Extended Kalman Filter) and the input velocity compensation method. The dynamic workspace control method is established by applying these methods to differential inverse kinematics solution. For verification of the proposed method, experimental data based test of ROV position tracking and simulation of the proposed control method are performed, which is based on the specification of the KORDI deep-sea ROV Hemire.

Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection (강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool)

  • Jeon, MyungHwan;Lee, Yeongjun;Shin, Young-Sik;Jang, Hyesu;Yeu, Taekyeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

UUV Platform Optimal Design for Overcoming Strong Current

  • Kim, Min-Gyu;Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Li, Ji-Hong;Kim, Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.434-445
    • /
    • 2021
  • This paper proposes an optimal design method for an unmanned underwater vehicle (UUV) platform to overcome strong current. First, to minimize the hydrodynamic drag components in water, the vehicle is designed to have a streamlined disc shape, which help maintaining horizontal motion (zero roll and pitch angles posture) while overcoming external current. To this end, four vertical thrusters are symmetrically mounted outside of the platform to stabilize the vehicle's horizontal motion. In the horizontal plane, four horizontal thrusters are symmetrically mounted outside of the disc, and each of them has the same forward and reverse thrust performances. With these four thrusters, a specific thrust vector control (TVC) method is proposed, and for external current in any direction, four horizontal thrusters are controlled to generate a vectored thrust force to encounter the current while minimizing the vehicle's rotation and maintaining its heading. However, for the numerical simulations, the vehicle's hydrodynamic coefficients related to the horizontal plane are derived based on both theoretical and empirically derived formulas. In addition to the simulation, experimental studies in both the water tank and circulating water channel are performed to verify the vehicle's various final performances, including its ability to overcome strong current.

Development of a Specialized Underwater Leg Convertible to a Manipulator for the Seabed Walking Robot CR200 (해저 보행 로봇 CR200을 위한 매니퓰레이터 기능을 갖는 다리 개발)

  • Kang, Hangoo;Shim, Hyungwon;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.709-717
    • /
    • 2013
  • This paper presents the development of a specialized underwater leg with a manipulator function(convertible-to-arm leg) for the seabed walking robot named CRABSTER200(CR200). The objective functions of the convertible-to-arm leg are to walk on the seabed and to work in underwater for precise seabed exploration and underwater tasks under coastal area with strong tidal current. In order to develop the leg, important design elements including the degree of freedom, dimensions, mass, motion range, joint structure/torque/angular-speed, pressure-resistance, watertight capability and cable protection are considered. The key elements of the convertible-to-arm leg are realized through concept/specific/mechanical design and implementation process with a suitable joint actuator/gear/controller selection procedure. In order to verify the performance of the manufactured convertible-to-arm leg, a 25bar pressure-resistant and watertight test using a high-pressure chamber and a joints operating test with posture control of the CR200 are performed. This paper describes the whole design, realization and verification process for implementation of the underwater convertible-to-arm leg.

Design and Control of a Six-degree of Freedom Autonomous Underwater Robot 'CHALAWAN'

  • Chatchanayuenyong, T.;Parnichkun, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1110-1115
    • /
    • 2004
  • Water covers two-thirds of the earth and has a great influence on the future existence of all human being. Thailand has extensive coastline and near shore water that contain vast biological and mineralogical resources. The rivers and canals can be found around the country especially in the Bangkok, which once called the Venice of the East. Autonomous underwater robot (AUR) will be soon a tool to help us better understand water resources and other environmental issues. This paper presents the design and basic control of a six-degree of freedom AUR "Chalawan", which was constructed to be used as a testbed for shallow. It is a simple low cost open-frame design, which can be modified easily to supports various research areas in the underwater environment. It was tested with a conventional proportional-integral-derivative (PID) controller. After fine-tuning of the controller gains, the results showed the controller's good performances. In the future, the dynamic model of the robot will be analyzed and identified. The advanced control algorithm will be implemented based on the obtained model.

  • PDF