• 제목/요약/키워드: Underwater Investigation

검색결과 104건 처리시간 0.022초

TMCP강의 습식수중 아크용접부의 냉각특성 개선에 관한 연구 (Study on Cooling Characteristic Improvement in Underwater Wet Arc Welding of TMCP Steelplate)

  • 김민남
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.113-124
    • /
    • 1992
  • The offshore industry created a need for quality wet weld repairs. Wet welding is a fast method of repair providing sound, structural quality welds. It requires less support equipment than a similar underwater dry weld repair or the alternative mechanical connections. Compared to welds made in air, underwater wet welds are plagued by increased hardness due to rapid quenching by the surrounding water. In this paper is described the experimntal study of improving the cooling rates of wet welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows : By shielding around weld arc surrounding, the cooling rates resulting from wet welds on TMCP steel plate could be lower than that of nonshielded wet welds and the fesibility on high quality of mecanical properties of wet weld on TMCP steel plate was carried out with shielded weld arc surrounding.

  • PDF

국산 선급 A-1 강판의 수중용접 입열량이 기계적 특성에 미치는 영향에 관한 연구 (Effect of Welding Heat Input on Mechanical Properties of Underwater Welded Joints of KR Grade A-1 Steel Plates)

  • 오세규;이종석;한상덕
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.120-126
    • /
    • 1987
  • In this paper, the optimizing investigation of characteristics of underwater welding by a gravity type arc welding process is experimentally carried out by using the .phi. 4mm ilmenite type of domestic coated welding electrodes for welding the domestic marine structural steel plates of 8mm thickness in order to develop the underwater welding techniques in practical use, resulting in the quantitative analysis possibility for the relationship between the mechanical propernical properties of underwater welded joint HAZ and the welding heat input.

  • PDF

배합시간과 배합량이 수중불분리성 콘크리트의 특성에 미치는 영향 (An Effect on the Properties of Antiwashout Underwater Concrete by mixing time and mixing quantity)

  • 박세인;김동명;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.345-350
    • /
    • 2000
  • The objective of this study makes investigation into the effect on the properties of underwater antiwashout concrete. which is followed by mixing time and mixing quantity. There is an tendency that (the compressive strength of underwater antiwashout concrete made and cured in fresh water or sea water) is increase when dry mixing time, mixing quantity, total mixing time is increase as unit weight grows. The difference of compressive strength (in case of no dry mixing time and 60 second) is averagely 46.8kgf/㎠ in the fresh water and 35.6kgf/㎠ in sea water. it's considered that dry mixing is dispersed by underwater antiwashout admixture.

  • PDF

해양설비용 센서의 다중 신호처리 회로 개발 및 성능 분석 (The Development and Performance Analysis of Multiple Signal Processing Circuit for Marine Installation Sensor)

  • 조정환;고성원
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.84-89
    • /
    • 2014
  • This paper proposes the new multiple signal processing monitoring sensor for the marine installation. The recent marine technology is focused on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. For these marine applications to be available, however, the provision of precise location information using monitoring sensor is essential. In this paper, the multiple signal processing circuit for obtaining the precise location information of marine installation sensor is developed and analyzed. The performance characteristics for obtaining the location information of marine installation sensor is analyzed. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably excellent performance for the monitoring for the marine installation.

유량제어밸브 인가신호 형태가 선형펌프 방식 수중사출 시스템의 성능에 미치는 영향에 관한 수치적 연구 (Effect of Command Signal of Flow Control Valve on Performance of Underwater Discharge System using Linear Pump - Numerical Investigation)

  • 이선주;최원식
    • 한국군사과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.219-227
    • /
    • 2021
  • In the present study, the effect of command signals of the flow control valve on performance of underwater discharge systems using a linear pump was investigated numerically. For that, the improved mathematical model was developed. The improvement is to calculate the flow leakage between the water cylinder and the piston. Also the model of the hydraulic cylinder is simplified. To validate the improved model, calculation results were compared with experiment results. The results of the study is as follows: Double ramp command signals of the flow control valve had an advantage over single ramp signals. The parametric study on the effect of double ramp command signals on performance of the system was performed. In case of using double ramp signals, the maximum acceleration of the underwater vehicle was reduced by approximately 50 % compared with using single ramp signals.

MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어 (Active Vibration Control of Smart Hull Structure in Underwater Using Micro-Fiber Composite Actuators)

  • 권오철;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.466-471
    • /
    • 2008
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezoceramic actuator named as Macro-Fiber Composite (MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear-Quadratic-Gaussian (LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

인공어초 조사용 다방향 수중 CCTV 카메라 시스템의 성능 특성 (Performance characteristics of a multi-directional underwater CCTV camera system to use in the artificial reef survey)

  • 이대재
    • 수산해양기술연구
    • /
    • 제47권2호
    • /
    • pp.146-152
    • /
    • 2011
  • Underwater CCTV camera systems are increasingly replaced the traditional net approach of assessing the species, numbers and aggregation patterns of marine animals distributing around the artificial reefs installed in the inshore fishing grounds, in particular, in relation to the biological investigation of behavior and distribution patterns of target fishes. In relation to these needs, we developed a multi-directional underwater CCTV camera system to use in detecting and tracking marine animals in the artificial reef ground. The marine targets to be investigated were independently tracked by using a camera module toward the bottom and four camera modules installed in the interval of $90^{\circ}$ in horizontal plane and inclination of $45^{\circ}$ in vertical plane of the CCTV system without the overlap of video frames by each camera module. From the results of several field tests at sea, we believe that the developed multi-directional underwater CCTV camera system will contribute to a better understanding in evaluating the effect of artificial reefs installed in the inshore fishing grounds.

MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어 (Active Vibration Control of Underwater Hull Structure Using Macro-Fiber Composite Actuators)

  • 권오철;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.138-145
    • /
    • 2009
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezocomposite actuator named as Macro-Fiber Composite(MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear Quadratic Gaussian(LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.