• Title/Summary/Keyword: Underwater Behavior

Search Result 110, Processing Time 0.031 seconds

Schooling Behavior and Estimation of the Fish School in Set Net by Fish Finder (어군탐지기에 의한 정치망내의 어군의 행동과 어군량 추정)

  • 신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1986
  • Schooling behavier to a fishing gear and estimation of the volume of fish school in set net have ~ been studied by making use of such techniques as visual observations, underwater cameras, under- water televison. However, all of these observation techniques are subject to restrictions caused by illumination, underwater visibility, underwater transparent and sea conditions. For the above mentioned reasoa, one of the most effective method by this time become generally known a method using fish finder. In this paper, in order to control the fishing ground of set net effectively and to develope the telemetric fish finder, the experiments for the target strength, underwater shape of fishing gear, schooling behavier and volume of fish school with fish finder were performed at Galgott fishing ground of set net located Keouje Island, 15th-24th July and 18th-20th October in 1985. The results of these experiment showed that a method using fish finder in fishing grOlllld of set net is available for estimating distribution and school size, fish behavier in relation to a fishing gear and underwater shape of fishing gears.

  • PDF

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik;Maaz Salman;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

Dynamic Modeling and Motion Analysis of Unmanned Underwater Gliders with Mass Shifter Unit and Buoyancy Engine (이동질량장치와 부력엔진을 포함한 무인 수중글라이더의 동역학 모델링 및 운동성능 해석)

  • Kim, Donghee;Lee, Sang Seob;Choi, Hyeung Sik;Kim, Joon Young;Lee, Shinje;Lee, Yong Kuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.466-473
    • /
    • 2014
  • Underwater gliders do not have any external propulsion systems that can generate and control their motion. Generally, underwater gliders would obtain a propulsive force through the lift force generated on the body by a fluid. Underwater gliders should be equipped with mechanisms that can induce heave and pitch motions. In this study, an inner movable and rotatable mass mechanism was proposed to generate the pitch and roll motions of an underwater glider. In addition, a buoyancy control unit was presented to adjust the displacement of the underwater glider. The buoyancy control unit could generate the heave motion of the underwater glider. In order to analyze the underwater dynamic behavior of this system, nonlinear 6-DOF dynamic equations that included mathematical models of the inner movable mass and buoyancy control unit were derived. Only kinematic characteristics such as the location of the inner movable mass and the piston position of the buoyancy control unit were considered because the velocities of these systems are very slow. The effectiveness of the proposed dynamic modeling was verified through sawtooth and spiraling motion simulations.

An Experimental Study about Behavior of a Repaired Underwater Structure with an Epoxy Fiber Panel and Polymer Mortar (에폭시 섬유판넬과 폴리머 모르타르로 단면보수된 수중구조물의 거동에 관한 실험적 연구)

  • Hong, Sung-Nam;Park, Jun-Myoung;You, Chung-Jun;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.69-77
    • /
    • 2009
  • An underwater structure is made to put with serious damage state by special environmental factors. If this damage phenomena persist, as for the structure, it is generated a structural serious problem because of the corrosion of a reinforcing bar and the loss of the concrete cut end. Repair work of an underwater structure is very harder than repair work in land, and it is actual that certification about a maintenance effect is uncertain. And the existing repair method is applied to a structure damaged with you without verification of a repair effect by a foreign reward and experience. In this study, a repair method about an underwater structure was proposed and observed a behavior characteristic and interface failure of an specimens. and comparison analyzed an effect of a proposed maintenance method.

Fish Schooling Simulator Using Crowd Behavior Patterns (군중 행동 패턴을 이용한 Fish 군중 시뮬레이터)

  • Kim, Jong-Chan;Cho, Seung-Il;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.106-112
    • /
    • 2007
  • Recently the crowd environment in the department of the animation is necessary to the digital industry. The goal of researching a proper crowd animation is to design character animation that is defined by the reality of scenes, performance of system and interaction with users to show the crowd vividly and effectively in cyber underwater. It is important to set up the crowd behavior patterns to represent for moving crowd naturally in cyber space. In the paper, we expressed the behavior patterns for flocks of fish in cyber underwater, and compared with the number of mesh, the number of fish, the number of frame, elapsed time, and resolution and analyzed them with the fish behavior simulating system.

  • PDF

Input Shaping Control of a Refueling System Operating in Water (입력성형기법을 이용한 핵연료이송시스템의 수중이동 시의 진동제어)

  • Piao, Mingxu;Shah, Umer Hameed;Jeon, Jae Young;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.402-407
    • /
    • 2014
  • In this paper, residual sway control of objects that are moved underwater is investigated. The fuel transfer system in a nuclear power plant transfers the nuclear fuel rods underwater. The research on the dynamics of the loads transferred in different mediums (water and air) and their control methods have not been fully developed yet. The attenuation characteristics of the fuel transfer system have been studied to minimize its residual vibration by considering the effects of hydrodynamic forces acting on the fuel rod. First, a mathematical model is derived for the underwater fuel transfer system, and then experiments have been conducted to study the dynamic behavior of the rod while it travels underwater. Lastly, the residual vibration at the end point is minimized using the input shaping technique.

Performance characteristics of a multi-directional underwater CCTV camera system to use in the artificial reef survey (인공어초 조사용 다방향 수중 CCTV 카메라 시스템의 성능 특성)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.146-152
    • /
    • 2011
  • Underwater CCTV camera systems are increasingly replaced the traditional net approach of assessing the species, numbers and aggregation patterns of marine animals distributing around the artificial reefs installed in the inshore fishing grounds, in particular, in relation to the biological investigation of behavior and distribution patterns of target fishes. In relation to these needs, we developed a multi-directional underwater CCTV camera system to use in detecting and tracking marine animals in the artificial reef ground. The marine targets to be investigated were independently tracked by using a camera module toward the bottom and four camera modules installed in the interval of $90^{\circ}$ in horizontal plane and inclination of $45^{\circ}$ in vertical plane of the CCTV system without the overlap of video frames by each camera module. From the results of several field tests at sea, we believe that the developed multi-directional underwater CCTV camera system will contribute to a better understanding in evaluating the effect of artificial reefs installed in the inshore fishing grounds.

A numerical analysis for the dynamic behavior of ROV launcher and 1st cable under combined excitations (결합가진 하의 ROV 런쳐와 케이블의 동적거동 수치 해석)

  • KWON DO-YOUNG;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.198-203
    • /
    • 2004
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The first cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A ROV launcher is also excited by the 1st cable motion. A numerical method is necessary for analysing the dynamic behaviour of the first marine cable and the ROV launcher. In this study, a numerival program is appled to a 6,000m long cable for a deep-sea unmanned underwater vehicle to shaw shows the dynamic behaviour of the cable and the ROV launcher under combined excitations.

  • PDF

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.