• Title/Summary/Keyword: Underwater Acoustic Network

Search Result 110, Processing Time 0.03 seconds

An Implementation of Acoustic-based MAC Protocol Multichannel Underwater Communication Network

  • Lim, Yong-Kon;Park, Jong-Won;Kim, Chun-Suk;Lee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.105-111
    • /
    • 1997
  • This Paper Proposes a new efficient system design strategies for the acoustic-based underwater multiple modem and media access control protocol. The system aims to establish the acoustic-based communication network of an underwater vehicles for deep sea mining, which ensures a certain level of maximum throughput regardless of the propagation delay of acoustic and allows fast data transmission through the acoustic-based multiple channel. A media access control protocol for integrated communication network and it's acoustic-based communication modems that allows 'peer-to-peer' communication between a surface mining plant multiple underwater system is designed, and the proposed media access control protocol is implemented for its verification. Furthermore, a proposed design strategies which make it possible to control the multiple vehicle for an underwater mining is presented in this paper.

  • PDF

Design and Performance Evaluation of Hierarchical Protocol for Underwater Acoustic Sensor Networks (수중음파 센서네트워크를 위한 계층별 프로토콜의 설계 및 성능 평가)

  • Kim, Ji-Eon;Yun, Nam-Yeol;Kim, Yung-Pyo;Shin, Soo-Young;Park, Soo-Hyun;Jeon, Jun-Ho;Park, Sung-Joon;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.157-166
    • /
    • 2011
  • As underwater environment monitoring system's interest has increased, the research is proceeding about underwater acoustic sensor network. Underwater sensor network can be applicable to many fields, such as underwater environment monitoring, underwater resource exploration, oceanic data collection, military purposes, etc. It is essential to define the PHY-MAC protocol for revitalization of the underwater acoustic sensor network which is available utilization in a variety of fields. However, underwater acoustic sensor network has to implement by consideration of underwater environmental characteristics, such as limited bandwidth, multi-path, fading, long propagation delay caused by low acoustic speed. In this paper, we define frequency of adjusted PHY protocol, network topology, MAC protocol, PHY-MAC interface, data frame format by consideration of underwater environmental characteristics. We also present system configuration of our implementation and evaluate performance based on our implementation with test in real underwater field.

A Virtual Address Mapping Method for Interconnection between Terrestrial Communication Network and Underwater Acoustic Communication Network (지상 통신 네트워크와 수중음파 통신 네트워크의 상호연결을 위한 가상 주소 매핑 방법)

  • Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.27-45
    • /
    • 2018
  • The terrestrial communication network and the underwater acoustic communication network have very different communication characteristics each other in operational environments, communication media, propagation delay, frequency bandwidth, transmission speed, bit error rate, and so on. These different characteristics cause some different address schemes and different maximum transmission units and, as a result, these differences must form certainly obstacles to the intercommunication between a terrestrial communication network and an underwater acoustic communication network. In this paper, we presents a method to use the virtual addresses to resolve the interconnection problem caused by different address schemes between a terrestrial communication network and an underwater acoustic communication network, and, through a mathematical modeling, we analyze the performance on the message transceiving delay time in the underwater environment.

Long Short-Term Memory Neural Network assisted Peak to Average Power Ratio Reduction for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communication

  • Waleed, Raza;Xuefei, Ma;Houbing, Song;Amir, Ali;Habib, Zubairi;Kamal, Acharya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.239-260
    • /
    • 2023
  • The underwater acoustic wireless communication networks are generally formed by the different autonomous underwater acoustic vehicles, and transceivers interconnected to the bottom of the ocean with battery deployed modems. Orthogonal frequency division multiplexing (OFDM) has become the most popular modulation technique in underwater acoustic communication due to its high data transmission and robustness over other symmetrical modulation techniques. To maintain the operability of underwater acoustic communication networks, the power consumption of battery-operated transceivers becomes a vital necessity to be minimized. The OFDM technology has a major lack of peak to average power ratio (PAPR) which results in the consumption of more power, creating non-linear distortion and increasing the bit error rate (BER). To overcome this situation, we have contributed our symmetry research into three dimensions. Firstly, we propose a machine learning-based underwater acoustic communication system through long short-term memory neural network (LSTM-NN). Secondly, the proposed LSTM-NN reduces the PAPR and makes the system reliable and efficient, which turns into a better performance of BER. Finally, the simulation and water tank experimental data results are executed which proves that the LSTM-NN is the best solution for mitigating the PAPR with non-linear distortion and complexity in the overall communication system.

Hybrid MAC Protocol Design for an Underwater Acoustic Network (수중음향통신망을 위한 하이브리드 MAC 프로토콜 설계)

  • Park, Jong-Won;Ko, Hak-Lim;Cho, A-Ra;Yun, Chang-Ho;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2088-2096
    • /
    • 2009
  • This paper deals with hybrid MAC protocol design for underwater acoustic networks. The proposed MAC protocol has the cluster structure with a master node and slave nodes, and the hybrid network structure that combines a contention free period based on TDMA(Time Division Multiple Access) with a contention period. The suggested MAC protocol has a beacon packet for supervising network, a guard period between time slots for packet collision, time tag for estimation of propagation delay with a master node, the time synchronization of nodes, entering and leaving of network, and the communication method among nodes. In this paper, we adapt the proposed hybrid MAC protocol to AUV network, that is the representative mobile device of underwater acoustic network, and verify this protocol is applicable in real underwater acoustic network environment.

Custody Transfer of Bundle layer in Security Mechanism for Under water Inter net of Things (UIoT)

  • Urunov, Khamdamboy;Namgung, Jung-Il;Park, Soo-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.506-523
    • /
    • 2015
  • The intent is to determine whether or not the custody transfer is helpful for data transmission in challenging underwater communications when running Bundle protocol or underwater protocols. From the point of view defending side, Underwater Acoustic Network (UAN) will be a serious threat for its strong functionality long rang and high precision of surveillance and detection. Therefore, countermeasures must be taken to weaken its effect. Our purpose is analyzed that how to benefit from the UIoT to learn from, exploit and preserve the natural underwater resources. Delay/Disruption Tolerant Network (DTN) is essential part of the network heterogeneity communication network. The vulnerability and potential security factors of UIoT are studied thereafter. Security mechanisms for an underwater environment are difficult to apply owing to the limited bandwidth. Therefore, for underwater security, appropriate security mechanisms and security requirements must be defined simultaneously. The paper consists of mathematical and security model. Most important point of view in the security challenges of effective Buffer and Storage management in DTN.

A Study on Dynamic Timeout Over Multiple Access with Collision Avoidance (충돌회피 다중접속을 위한 동적 타임아웃 연구)

  • Khoa, Tran Thi Minh;Oh, Seung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.97-100
    • /
    • 2011
  • Underwater Wireless Acoustic Sensor Networks have become an important area of research over the recent decades. Designing an underwater network, especially a media access control (MAC) protocol, faces many challenges due to the peculiarities of underwater environment. One of the most important problems is resulted from long and variable propagation delay of the acoustic wave. In this paper, we propose a new method, namely Dynamic Timeout over Multiple Access with Collision Avoidance (DT/MACA), which is designed to handle long and high variable propagation delay in underwater acoustic sensor networks. In this proposed method, the difference timeout intervals are evaluated and applied to each network transmission. Simulation results show that our work not only improves the network throughput, but also decreases the unnecessary retransmission and end-to-end delay.

Analysis of the Cryptographic Algorithms's Performance on Various Devices Suitable for Underwater Communication (수중통신에 활용가능한 다양한 플랫폼에서의 암호 알고리즘 성능비교)

  • Yun, Chae-Won;Lee, Jae-Hoon;Yi, Okyeon;Shin, Su-Young;Park, Soo-Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.3
    • /
    • pp.71-78
    • /
    • 2016
  • Recently, The interest about underwater acoustic communication is increase such as marine resources, disaster prevention, weather prediction, and so on. Because the underwater acoustic communication uses a water as media, the underwater acoustic communication has a lot of restrictions. Although the underwater acoustic communication is hard, it is important to consider the security. In this paper, we estimate the performance of cryptographic algorithms(AES, ARIA, and LEA) on a various devices, available in underwater acoustic communication, and analysis the results. This result will be provide effective data confidentiality for underwater communication.

A Hierarchical Underwater Acoustic Sensor Network Architecture Utilizing AUVs' Optimal Trajectory Movements (수중 무인기의 최적 궤도 이동을 활용하는 계층적 수중 음향 센서 네트워크 구조)

  • Nguyen, Thi Tham;Yoon, Seokhoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1328-1336
    • /
    • 2012
  • Compared to terrestrial RF communications, underwater acoustic communications have several limitations such as limited bandwidth, high level of fading effects, and a large underwater propagation delay. In this paper, in order to tackle those limitations of underwater communications and to make it possible to form a large underwater monitoring systems, we propose a hierarchical underwater network architecture, which consists of underwater sensors, clusterheads, underwater/surface sink nodes, autonomous underwater vehicles (AUVs). In the proposed architecture, for the maximization of packet delivery ratio and the minimization of underwater sensor's energy consumption, a hybrid routing protocol is used. More specifically, cluster members use Tree based routing to transmit sensing data to clusterheads. AUVs on optimal trajectory movements collect the aggregated data from clusterhead and finally forward the data to the sink node. Also, in order to minimize the maximum travel distance of AUVs, an Integer Linear Programming based algorithm is employed. Performance analysis through simulations shows that the proposed architecture can achieve a higher data delivery ratio and lower energy consumption than existing routing schemes such as gradient based routing and geographical forwarding. Start after striking space key 2 times.

A Study on the Mac Protocol for Multichannel Network Underwater Acoustic Communication (수중 초음파 다중통신 네트워크를 위한 MAC 프로토콜에 관한 연구)

  • Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2006
  • This paper proposes the new efficient system design strategies for the acoustic-based underwater multiple modem and media access control protocol. The system aims to establish the acoustic-based communication network of an underwater vehicles for deep sea mining, which ensures a certain level of maximum throughput regardless of the propagation delay of acoustic and allows fast data transmission through the acoustic-based multiple channel.

  • PDF