• Title/Summary/Keyword: Undershoot

Search Result 73, Processing Time 0.024 seconds

Perceived Dark Rim Artifact in First-Pass Myocardial Perfusion Magnetic Resonance Imaging Due to Visual Illusion

  • Taehoon Shin;Krishna S. Nayak
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.462-470
    • /
    • 2020
  • Objective: To demonstrate that human visual illusion can contribute to sub-endocardial dark rim artifact in contrast-enhanced myocardial perfusion magnetic resonance images. Materials and Methods: Numerical phantoms were generated to simulate the first-passage of contrast agent in the heart, and rendered in conventional gray scale as well as in color scale with reduced luminance variation. Cardiac perfusion images were acquired from two healthy volunteers, and were displayed by the same gray and color scales used in the numerical study. Before and after k-space windowing, the left ventricle (LV)-myocardium boarders were analyzed visually and quantitatively through intensity profiles perpendicular the boarders. Results: k-space windowing yielded monotonically decreasing signal intensity near the LV-myocardium boarder in the phantom images, as confirmed by negative finite difference values near the board ranging -1.07 to -0.14. However, the dark band still appears, which is perceived by visual illusion. Dark rim is perceived in the in-vivo images after k-space windowing that removed the quantitative signal dip, suggesting that the perceived dark rim is a visual illusion. The perceived dark rim is stronger at peak LV enhancement than the peak myocardial enhancement, due to the larger intensity difference between LV and myocardium. In both numerical phantom and in-vivo images, the illusory dark band is not visible in the color map due to reduced luminance variation. Conclusion: Visual illusion is another potential cause of dark rim artifact in contrast-enhanced myocardial perfusion MRI as demonstrated by illusory rim perceived in the absence of quantitative intensity undershoot.

Adaptive Weight Adjusted Catmull-Rom Spline Interpolation Based on Pixel Intensity Variation for Medical Imaging Volume Visualization (의료영상 볼륨가시화를 위한 화소 값의 변화도에 따른 적응적 가중치를 적용한 캐트멀-롬 스플라인 보간법)

  • Lee, Hae-Na;Yoo, Sun K.
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.147-159
    • /
    • 2013
  • In medical visualization, volume visualization is widely used. Applying 3D images to diagnose requires high resolution and accurately implement visualization techniques are being researched accordingly. However, when a three-dimensional image volume visualization is implemented using volume data, aliasing will occur since using discrete data. Supersampling method, getting lots of samples, is used to reduce artifacts. One of the supersampling methods is Catmull-rom spline. This method calculates accurate interpolation value because it is easy to compute and pass through control points. But, Catmull-rom spline method occurs overshoot or undershoot in large gradient of pixel values. So, interpolated values are different from original signal. In this paper, we propose an adaptive adjusting weights interpolation method using Gaussian function. Proposed method shows that overshoot is reduced on the point has a large gradient and PSNR is higher than other interpolated image results.

Design of an Optimal Controller with Neural Networks for Nonminimum Phase Systems (신경 회로망을 이용한 비최소 위상 시스템의 최적 제어기 설계)

  • 박상봉;박철훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.56-66
    • /
    • 1998
  • This paper investigates a neuro-controller combined in parallel with a conventional linear controller of PID type in order to control nonminimum phase systems more efficiently. The objective is to minimize overall position errors as well as to maintain small undershooting. A costfunction is proposed with two conflict objectives. The neuro-controller is trained off-line with evolutionary programming(EP) in such a way that it becomes optimal by minimizing the given cost function through global evaluation based on desired control performance during the whole training time interval. However, it is not easy to find an optimal solution which satisfies individual objective simultaneously. With the concept of Pareto optimality and EP, we train the proposed controller more effectively and obtain a valuable set of optimal solutions. Simulation results show the efficacy of the proposed controller in a viewpoint of improvement of performance of a step response like fast settling time and small undershoot or overshoot compared with that of a conventional linear controller.

  • PDF

2-Channel DC-DC Converter for OLED Display with RF Noise Immunity (RF 노이즈 내성을 가진 OLED 디스플레이용 2-채널 DC-DC 변환기)

  • Kim, Tae-Un;Kim, Hak-Yun;Choi, Ho-Yong
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.853-858
    • /
    • 2020
  • This paper proposes a 2-ch DC-DC converter for OLED display with immunity against RF noise inserted from communication device. For RF signal immunity, an input voltage variation reduction circuit that attenuates as much as the input voltage variation is embedded. The boost converter for positive voltage VPOS operates in SPWM-PWM dual mode and has a dead time controller to increase power efficiency. The inverting charge pump for negative voltage VNEG is a 2-phase scheme and operates in PFM using VCO to reduce output ripple voltage. Simulation results using 0.18 ㎛ BCDMOS process show that the overshoot and undershoot of the output voltage decrease from 10 mV to 2 mV and 5 mV, respectively. The 2-ch DC-DC converter has power efficiency of 39%~93%, and the power efficiency of the boost converter is up to 3% higher than the conventional method without dead time controller.

Coalescence behavior of dispersed domains in binary immiscible fluid mixtures having bimodal size distributions under steady shear flow

  • Takahashi Yoshiaki;Kato Tsuyoshi
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.125-130
    • /
    • 2005
  • Coalescence process of binary immiscible fluid mixtures having bimodal size distributions, prepared by mixing two pre-sheared samples at different shear rates, ${\gamma}_{pre1}\;and\;{\gamma}_{pre2}$, under shear flow at a final shear rate, ${\gamma}_f$, are examined by transient shear stress measurements and microscopic observations in comparison with the results for simply pre-sheared samples having narrow size distributions (unimodal distribution samples). Component fluids are a silicone oil (PDMS) and a hydrocarbon-formaldehyde resin (Genelite) and their viscosities are 14.1 and 21.0 $pa{\cdot}sec$ at room temperature $(ca.\;20^{\circ}C)$, respectively. The weight ratio of PDMS: Genelite was 7:3. Three cases, $({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;({\gamma}_{pre1}=0.8sec^{-1},\;{\gamma}_{pre2}=4.0sec^{-1}\;and\;{\gamma}_f=2.4sec^{-1}),\;and\;({\gamma}_{pre1}=7.2sec^{-1},\;{\gamma}_{pre2}=12.0^sec^{-1}\;and\;{\gamma}_f=7.2sec^{-1})$ the first case, transient shear stress did not show any significant difference but domains larger than the initial state are observed at short times. In the latter cases, there exist undershoot of shear stress, reflecting existence of deformed large domains, which is confirmed by the direct observation. It is concluded that coalescence between large and small domains more frequently occur than coalescence between the domains with similar size in the bimodal distribution samples.

Experimental Study on Transient Response According to Variation of Rib Height at Fuel Cell Plate (연료전지용 분리판의 리브 높이 변화에 따른 응답성 변화에 관한 실험적 연구)

  • Nam, Ki Hoon;Yun, Sung Ho;Han, Sung Ho;Choi, Nam Hyeon;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1009-1014
    • /
    • 2013
  • In the present study, using a variation of rib height, the transient response and the performance are investigated. The cell voltage is acquired according to the current density change($0.8A/cm^2$ to $1.0A/cm^2$) under same stoichiometry and relative humidity. The different level of undershoots appeared at the different clamping pressure(1.5MPa and 2.0MPa) and different rib height. At 1.5MPa clamping pressure, rib manufactured cut at $100{\mu}m$ height goes to steady state faster than reference plate and has lower maximum undershoot voltage. But performance is lower than reference plate due to increasing contact resistance.

Study on the Improvement of the Convective Differencing Scheme for the High-Accuracy and Stable Resolution of the Numerical Solution (수치해의 정확성과 안정성이 보장되는 대류항 미분법 개선에 관한 연구)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1179-1194
    • /
    • 1992
  • QUICKER scheme has several attractive properties. However, under highly convective conditions, it produces overshoots and possibly some oscillations on each side of steps in the dependent variable when the flow is convected at an angle oblique to the grid line. Fortunately, it is possible to modify the QUICKER scheme using non-linear and linear functional relationship. Details of the development of polynomial upwinding scheme are given in this paper, where it is seen that this non-linear scheme has also third order accuracy. This polynomial upwinding scheme is used as the basis for the SHARPER and SMARTER schemes. Another revised scheme was developed by partial modification of QUICKER scheme using CDS and UPWIND schemes(QUICKUP). These revised schemes are tested at the well known bench mark flows, Two-Dimensional Pure Convection Flows in Oblique-Step, Lid Driven Cavity Flows and Buoyancy Driven Cavity Flows. For pure convection oblique step flow test problem, QUICKUP, SMARTER and SHARPER schemes remain absolutely monotonic without overshoot and oscillation. QUICKUP scheme is more accurate than any other scheme in their relative accuracy. In high Reynolds number Lid Driven Cavity Flow, SMARTER and SHARPER schemes retain lower computational cost than QUICKER and QUICKUP schemes, but computed velocity values in the revised schemes produced less predicted values than QUICKER scheme which is strongly effected by overshoot and undershoot values. Also, in Buoyancy Driven Cavity Flow, SMARTER, SHARPER and QUICKUP schemes give acceptable results.

Electromyographic evidence for a gestural-overlap analysis of vowel devoicing in Korean

  • Jun, Sun-A;Beckman, M.;Niimi, Seiji;Tiede, Mark
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.153-200
    • /
    • 1997
  • In languages such as Japanese, it is very common to observe that short peripheral vowel are completely voiceless when surrounded by voiceless consonants. This phenomenon has been known as Montreal French, Shanghai Chinese, Greek, and Korean. Traditionally this phenomenon has been described as a phonological rule that either categorically deletes the vowel or changes the [+voice] feature of the vowel to [-voice]. This analysis was supported by Sawashima (1971) and Hirose (1971)'s observation that there are two distinct EMG patterns for voiced and devoiced vowel in Japanese. Close examination of the phonetic evidence based on acoustic data, however, shows that these phonological characterizations are not tenable (Jun & Beckman 1993, 1994). In this paper, we examined the vowel devoicing phenomenon in Korean using data from ENG fiberscopic and acoustic recorders of 100 sentences produced by one Korean speaker. The results show that there is variability in the 'degree of devoicing' in both acoustic and EMG signals, and in the patterns of glottal closing and opening across different devoiced tokens. There seems to be no categorical difference between devoiced and voiced tokens, for either EMG activity events or glottal patterns. All of these observations support the notion that vowel devoicing in Korean can not be described as the result of the application of a phonological rule. Rather, devoicing seems to be a highly variable 'phonetic' process, a more or less subtle variation in the specification of such phonetic metrics as degree and timing of glottal opening, or of associated subglottal pressure or intra-oral airflow associated with concurrent tone and stricture specifications. Some of token-pair comparisons are amenable to an explanation in terms of gestural overlap and undershoot. However, the effect of gestural timing on vocal fold state seems to be a highly nonlinear function of the interaction among specifications for the relative timing of glottal adduction and abduction gestures, of the amplitudes of the overlapped gestures, of aerodynamic conditions created by concurrent oral tonal gestures, and so on. In summary, to understand devoicing, it will be necessary to examine its effect on phonetic representation of events in many parts of the vocal tracts, and at many stages of the speech chain between the motor intent and the acoustic signal that reaches the hearer's ear.

  • PDF

Numerical Study on Temporal Evolution of Wind-Wave Spectra (풍파 스펙트럼의 시간발전에 관한 수치 실험)

  • 오병철;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.20-33
    • /
    • 1999
  • The evolution of deep-sea waves is driven by energy input from wind, nonlinear energy transfer between wave components, and dissipation through whitecaps. A comparative study was implemented by the use of two wave models in which only the computation methods of nonlinear wave-wave interactions are different from each other. It was reaffirmed that the nonlinear interaction plays a central role in such phenomena that occurred during the spectral growth of wind-seas as down-shift of the spectral peak frequency, overshoot, undershoot, and formation of self-similar spectrum. Specifically, the directional distribution at high frequencies develops into bimodal form, which is attributed to the nonlinear interactions. As saturation stage is reached, spectral density at high frequencies becomes proportional to negative 4 power to the frequency. Perturbations introduced into the spectrum quickly vanished through the actions of the self-similar mechanism. Thus, the nonlinear transfer has important contribution to the stability of numerical ocean wave models.

  • PDF

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.