• 제목/요약/키워드: Underlay networks

검색결과 45건 처리시간 0.025초

Cognitive Relay Networks with Underlay Spectrum Sharing and Channel Estimation Error: Interference Probability and BER Analysis

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • 제16권3호
    • /
    • pp.301-304
    • /
    • 2014
  • This paper proposes accurate interference probability and bit error rate formulas for cognitive relay networks with underlay spectrum sharing and channel estimation error (CEE). Numerous results reveal that the CEE not only degrades the performance of secondary systems (SSs) but also increases interference power caused by SSs to primary systems (PSs), eventually unfavorable to both systems. A solution to further protect PSs from this effect through reducing the power of secondary transmitters is investigated and analyzed.

네트워크 코딩을 쓰는 언더레이 인지 무선 네트워크에서의 주파수 할당과 경로 선택 기법 (Frequency Allocation and Path Selection Scheme in Underlay Cognitive Radio Networks Using Network Coding)

  • 이도행;이원형;강성민;황호영
    • 한국통신학회논문지
    • /
    • 제40권12호
    • /
    • pp.2372-2380
    • /
    • 2015
  • 본 논문에서는 네트워크 코딩을 쓰는 언더레이 인지 무선 네트워크에서의 주파수 할당과 경로 선택 기법을 제안한다. 네트워크 코딩 기법과 언더레이 인지 무선을 같이 고려하여 경로를 선택하고, 선택한 경로로 통신하는 SU들의 전체 시스템 처리율을 최대화 하는 최적화 문제를 제안한다. 제안한 최적화 문제를 다중 차원 다중 선택 배낭 문제로 변환한 후, 선형 계획 완화를 적용하여 전체 시스템 처리율에 대한 이론적인 상한 값을 제시하고, 주어진 환경에 대해서 SU들의 전체 시스템 처리율을 BFS를 통해 구한다. 성능 비교를 위해 링크 품질 기반의 LQF기법에 대한 SU들의 전체 시스템 처리율을 구하고, BFS를 사용한 경우의 SU들의 시스템 처리율과 비교 분석한다. 시뮬레이션을 통해, 네트워크 코딩 적용 시 네트워크 코딩을 적용하지 않는 경우보다 성능이 개선됨을 보이고, 언더레이 인지 무선 네트워크에서 제안한 기법에 대한 BFS를 사용한 SU들의 시스템 처리율이 LQF를 사용한 SU들의 시스템 처리율보다 더 높음을 보인다.

Underlay Cooperative Cognitive Networks with Imperfect Nakagami-m Fading Channel Information and Strict Transmit Power Constraint: Interference Statistics and Outage Probability Analysis

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • 제16권1호
    • /
    • pp.10-17
    • /
    • 2014
  • This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.

Bit Error Rate of Underlay Decode-and-Forward Cognitive Networks with Best Relay Selection

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Alexandropoulos, George C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.162-171
    • /
    • 2015
  • This paper provides an analytic performance evaluation of the bit error rate (BER) of underlay decode-and-forward cognitive networks with best relay selection over Rayleigh multipath fading channels. A generalized BER expression valid for arbitrary operational parameters is firstly presented in the form of a single integral, which is then employed for determining the diversity order and coding gain for different best relay selection scenarios. Furthermore, a novel and highly accurate closed-form approximate BER expression is derived for the specific case where relays are located relatively close to each other. The presented results are rather convenient to handle both analytically and numerically, while they are shown to be in good agreement with results from respective computer simulations. In addition, it is shown that as in the case of conventional relaying networks, the behaviour of underlay relaying cognitive networks with best relay selection depends significantly on the number of involved relays.

Queuing Analysis for Overlay/Underlay Spectrum Access in Cognitive Radio Networks

  • Do, Cuong T.;Hong, Choong-Seon
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.190-192
    • /
    • 2012
  • In this paper, we present theoretical queuing analysis for hybrid overlay/underlay Cognitive Radio (CR) system by applying M/M/1 queuing model where the rate of arrival and the service capacity are subject to Poisson alterations. Numerical results are used to prove a high degree of accuracy for the derived expressions. The result can be used as a benchmark to evaluate the performance of a hybrid overlay/underlay CR system.

On Performance Evaluation of Hybrid Decode-Amplify-Forward Relaying Protocol with Partial Relay Selection in Underlay Cognitive Networks

  • Duy, Tran Trung;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • 제16권5호
    • /
    • pp.502-511
    • /
    • 2014
  • In this paper, we evaluate performance of a hybrid decode-amplify-forward relaying protocol in underlay cognitive radio. In the proposed protocol, a secondary relay which is chosen by partial relay selection method helps a transmission between a secondary source and a secondary destination. In particular, if the chosen relay decodes the secondary source's signal successfully, it will forward the decoded signal to the secondary destination. Otherwise, it will amplify the signal received from the secondary source and will forward the amplified signal to the secondary destination. We evaluate the performance of our scheme via theory and simulation. Results show that the proposed protocol outperforms the amplify-and-forward and decode-and-forward protocols in terms of outage probability.

CR 넷워크를 위한 주파수 감지에 기번한 적응적인 전력 제어 전략 (Adaptive Power Control Strategy based on Spectrum Sensing for Cognitive Relay Networks)

  • 호사원;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.82-85
    • /
    • 2019
  • An adaptive power control scheme is proposed for the cognitive relay networks with joint overlay and underlay spectrum sharing model. The transmit power of the secondary user is adjusted adaptively according to the spectrum sensing results and the interference channel condition. The outage probability of the secondary user is compared by Monte - Carlo simulations between the fixed power control scheme and pure overlay or underlay spectrum sharing schemes. The results show that, by employing the adaptive power control strategy, the interference probability of the secondary user to the primary user is decreased by 70 % ~ 80 % under the same outage probability. Also, the outage probability of the secondary user is reduced by 1 ~ 2 orders of magnitude under the same interference probability. Thus, the performance of the spectrum sharing is improved effectively.

A Received Signal Strength-based Primary User Localization Scheme for Cognitive Radio Sensor Networks Using Underlay Model-based Spectrum Access

  • Lee, Young-Doo;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2663-2674
    • /
    • 2014
  • For cognitive radio sensor networks (CRSNs) that use underlay-based spectrum access, the location of the primary user (PU) plays an important role in the power control of the secondary users (SUs), because the SUs must keep the minimum interference level required by the PU. Received signal strength (RSS)-based localization schemes provide low-cost implementation and low complexity, thus it is suitable for the PU localization in CRSNs. However, the RSS-based localization schemes have a high localization error because they use an inexact path loss exponent (PLE). Thus, applying a RSS-based localization scheme into the PU localization would cause a high interference to the PU. In order to reduce the localization error and improve the channel reuse rate, we propose a RSS-based PU localization scheme that uses distance calibration for CRSNs using underlay model-based spectrum access. Through the simulation results, it is shown that the proposed scheme can provide less localization error as well as more spectrum utilization than the RSS-based PU localization using the mean and the maximum likelihood calibration.

언더레이 인지기술에서 양방향 릴레이 증분 협력 전송에 관한 연구 (Incremental Cooperative Transmission of Bidirectional Relaying Schemes in Underlay Cognitive Radio)

  • 공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.47-53
    • /
    • 2013
  • 본 논문에서는, 양 방향 언더레이 인지 네트워크의 점진적 협력 전송을 제안한다. 제안된 프로토콜은 두 2차 소스가 간섭 조건에 따라 보조 릴레이의 도움으로 서로의 패킷을 전송하려 시도하는 것이다. 성능 평가를 위해, 레일리히 페이딩 채널의 평균 정전 확률에 대한 폐구간의 정확한 식을 유도한다. 또한, 유도된 식을 확인하기 위해 몬테카를로 시뮬레이션을 수행한다. 그 결과, 시뮬레이션과 이론적 결과가 일치하며, 제안된 프로토콜의 정전 확률은 양방향 직접 통신 프로토콜보다 더욱 우수하다.

Performance Improvement for Device-to-Device (D2D) Users in Underlay Cellular Communication Networks

  • Bin Zhong ;Hehong Lin;Liang Chen ;Zhongshan Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2805-2817
    • /
    • 2024
  • This study focuses on the performance of device-to-device (D2D) communications in underlay cellular networks by analyzing key metrics such as successful transmission probability, coverage probability, and throughput. Under the homogeneous Poisson point process (PPP) spatial distribution of full-duplex (FD)-D2D users in cellular networks, stochastic geometry tools are used to derive approximate expressions for D2D users' coverage probability and throughput. In comparison to the conventional half-duplex (HD) communication mode, when the self-interference cancellation factor β reaches -95 dB, there is a substantial improvement in the throughput of FD-D2D users, nearly doubling their gain. Additionally, experimental results demonstrate that the Newton iterative algorithm can be used to optimize the targeted signal-to-interference-plus-noise-ratio (SINR) threshold of users within the range of (10, 20) dB.