• Title/Summary/Keyword: Underground-Structure

Search Result 996, Processing Time 0.027 seconds

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Site Characteristics Around the Gongsansung Circular Pond in Gongju Based on the Seismic Methods (탄성파탐사를 이용한 공주 공산성 원형연못의 지반조사)

  • Oh, Jin-Yong;Suh, Man-Cheol
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.623-631
    • /
    • 2005
  • We applied the seismic method to investigate the site characteristics around the Circular Pond (top diameter 7.3 m, bottom diameter 3 m, and depth 4.78 m) at the Ssangsujung Park within the Gongsansung in Gongju. Previous excavations for the cultural assets beneath the Ssangsujung Park disclosed the assumed site of the Palace of the Beakje Dynasty and the Circular Pond containing the Bakje relics. We demonstrated that the seismic prospecting can be applicable to delineate the underground structure around the cultural properties by the three kinds of seismic approaches: walk-away test, conventional refraction method, and equal-distance refraction survey. The last method which is designed by this work ran detect the I-W variations of seismic velocity in the subsurface medium across the Circular Pond on the basis of the difference of the P-wave arrival times between the 1-m-spacing 24 geophones and the corresponding 24 shots parallel with the geophone profile. From the combined results, prominent three-layer velocity structure is observed around the Circular Pond. The bottom layer is interpreted as the basement rock which is exposed near the Ssangsujung whereas the upper layer with relatively lower velocities is interpreted to be the artificial covering. The basement depth beneath the Circular Pond is deeper than the norhern area. The western basement of Circular Pond has the thicker weaker layer compared with the eastern part. Thus, the middle layer could be constructed as the artificial foundation during the Beakje Dynasty. Consequently, the Kong-sansung Circular Pond is possibly built upwardly rather than digging.

A Field Survey of Noise Associated with Subway Train Passage (지하철 연도변의 소음 조사)

  • Son Jung Gon
    • Explosives and Blasting
    • /
    • v.11 no.2
    • /
    • pp.60-68
    • /
    • 1993
  • The noise and vibration generated by the subway rolling stocks operated along the Seoul Subway Line No.1, 2, 3, and 4 lead to a controversy of pollution problem especially in residential areas. However, there is no data or guide to define the damage or provide adequate protection against such pollutions. The field measurements were made to characterize the noise attenuation due to distance, noise level distribution around the subway track of the aboveground and underground parts of each Line. The assessment criteria and methods are considered in addition to the practical available noise control methods. The noise level measured at Line No. 1 and 3 are less than 60 dB(A) with no pollution problem. Only a part of the aboveground section of Line No.2 and 4 indicates severe noise pollution. The effective boundary of these areas exposed to 70dB (A) noise are within 50m from the track centerline of No.2 line and 25m of No.4 line. The residents file a strong complaints whenever the noise level exceeds the 80dB (A) , and an occasional complaints between 70 to 80 dB(A). The distribution of high level noise of 80 dB(A) occurs within 25m from the track centerline of the overbridge, 12.5m of the short steel bridge, and about loom of the long steel bridge such as Dangsan Bridge. The intermediate noise level of 70 to 80 dB(A) is recorded within 50m from the overbridge, U-type retaining structure, and short steel structure, and 280m from the long steel bridge. The results presented in this paper can be used to understand the characteristics of the noise pollution along the Seoul Subway now In operation, and used as a guide to improve the existing noise pollution problems.

  • PDF

Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine (대규모 노천 석탄광산의 사면 안정화를 위한 지하수 유동 체계 분석)

  • Ryu, D.W.;Kim, H.M.;Oh, J.H.;Sunwoo, C.;Jung, Y.B.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.248-260
    • /
    • 2009
  • With regard to oversea mineral resources development, recent trend has been changed from a simple capital investment to a direct development of the resources. In relation to the stability of a slope in large open-pit coal mine, groundwater system was investigated and the validity of horizontal drainage hole was evaluated in Pasir coal mine, Indonesia. In this work, various field tests were carried out for a characterization of groundwater system, which included in-situ permeability measurement, tracer test and monitoring of groundwater levels. Especially, the influence of SM river on the characteristics of the groundwater flow system was mainly inspected. For the permeability measurement, Guelph permeameter was employed, and was found that sandstone was more permeable than mudstone and coal seam. From a comparison of lithological structure and the results of groundwater level monitoring, sandstone and thin coal seam with fractures were found to be a main channel for groundwater flow. In the results of tracer tests, the effect of SM river on the groundwater system depends on the geological structure of its base. To identify the effect of horizontal drainage holes, 2-D groundwater modeling was performed. Four different cases were tested, which are different from the length of drainage hole and the existence of pond on top of the slope. To enhance the drainage effect and slope stability, the drainage hole should be drilled to the depth of coal seam layer, which provides a main pathway of groundwater flow and embedded by sandstone. For this purpose, correct identification of surrounding geology should be preceded.

Evaluation of Uplift Force Acting on Foundation of Underground Structure (지하구조물 하부에 작용하는 양압력 평가)

  • Kim, Jin-Man;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.662-671
    • /
    • 2020
  • The uplift force acts directly on the foundation and causes a building to float to the upper ground. To examine the stability of a structure according to the uplift force, four sites (Paju, Anyang, Osan, and Gangneung) were selected, and sensors were installed on the foundations for the field tests. The rainfall characteristics were analyzed around June~September, and the changes in the water level of the adjacent river were considered. The maximum uplift force except for Gangneung did not exceed 72% of the water pressure when the groundwater level was up to the surface. On the other hand, the maximum uplift force in Osan was approximately 67%, but the reliability was slightly inferior because the difference from the average (46%) was large. The minimum uplift force was within 10% except for Anyang (~ 41%). At the Gangneung site on soft rock where the permanent drainage facility was installed before the measurement, the maximum and minimum uplift force was approximately 14% and 3.5%, respectively. Based on the measurement results, the possibility of overdesigning or underdesigning comes from the design by the hydrostatic pressure when the groundwater level is up to the surface.

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Liquefaction-Induced Uplift of Geotechnical Buried Structures: Centrifuge Modeling and Seismic Performance-Based Design (지반 액상화에 의한 지중 매설구조물의 부상: 원심모형시험 및 내진성능설계)

  • Kang, Gi-Chun;Iai, Susumu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.5-16
    • /
    • 2012
  • Geotechnical buried structures with relatively light weight have been suffering from uplift damage due to liquefaction in the past earthquakes. The factor of safety approach by Koseki et al. (1997a), which is widely used in seismic design, predicts the triggering of uplift. However, a method for "quantitative" estimates of the uplift displacement has yet to be established. Estimation of the uplift displacement may be an important factor to be considered for designing underground structures under the framework of performance-based design (ISO23469, 2005). Therefore, evaluation of the uplift displacement of buried structure in liquefied ground during earthquakes is needed for a performance-based design as a practical application. In order to predict the uplift displacement quantitatively, a simplified method is derived based on the equilibrium of vertical forces acting on buried structures in backfill during earthquakes (Tobita et al., 2012). The method is verified through comparisons with results of centrifuge model tests and damaged sewerage systems after the 2004 Niigata-ken Chuetsu, Japan, earthquake. The proposed flow diagram for performance-based design includes estimation of the uplift displacement as well as liquefaction limit of backfill.

Evaluation on the Applicability of Monitoring for Urban Railway Structure Using Brillouin Optical Correlation Domain Analysis Based Distributed Optical Fiber Sensor (브릴루앙 광 상관영역 기반 분포형 광섬유를 활용한 도시철도 구조물의 모니터링 적용성 평가)

  • Chae, Deokho;Lee, Sungjin;Lee, Jin-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.13-19
    • /
    • 2018
  • Recently, there have been various problems aroused on the domestic infrastructures as the domestic cities become old. Accordingly, the national concerns grow on the urban railway and the related structures, which brings the national interests are brought on the research on the maintenance and rehabilitation of the old infrastructures. The underground structure of urban railway are checked with the strain gages or fiber brag grating (FBG) sensors on the railway. However, these methods are known to have resolution limitations on the investigations of the specified abnormal section. Therefore, the applicability of the Brillouin Optical Correlation Domain Analysis (BOCDA) based distributed fiber optic sensor system on the railway was evaluated in this study. The constructed BOCDA fiber optic sensor system shows high resolution of 10, 20, 50, 100 cm and capability of continuous monitoring on overall or specified section within 2 km range. The applicability evaluation was performed on the 250 m distribution of fiber optic sensors abandoned railway for continuous monitoring. The applicability of the system on the specified area was evaluated with wheel load testing. As a result, data loss tends to increase with the reduction of spatial resolution from 1.0 m to 0.1 m. Even though the measuring speed is reduced with lower spatial resolution, data accuracy increases on the location and deformation. The system can be applicable to various structures if the proper distribution method is invented later.

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.