• Title/Summary/Keyword: Underground station

Search Result 317, Processing Time 0.024 seconds

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

A NUMERICAL STUDY ON THE FIRE EMERGENCY IN THE UNDERGROUND STATION WITH TRACKWAY EXHAUST SYSTEM (TES) (선로부 TES를 갖는 지하철 역사내 화재의 수치 해석)

  • Park, Jong-Tack;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.26-31
    • /
    • 2006
  • In the present study, a numerical simulation of the subway carriage fire is performed to determine the more effective operation of Trackway Exhaust System(TES) in underground stations. The four types of possible TES operation (OSUS, OSUE, OEUS and OEUE) is simulated and compared their removal capability of smoke and hot temperature for the carriage fire of 2MW. From the results, the distribution of temperature and smoke concentration is more dependent on the operation of fans located at upper side of the platform than those at lower side. It is also found from the results that for more efficient smoke control, the fans at upper side of the platform should be operated as an exhaust system. Whereas the fans at lower side can be operated as a supply system to aid upper exhaust fans.

Applications of BOTDR fiber optics to the monitoring of underground structures

  • Moffat, Ricardo A.;Beltran, Juan F.;Herrera, Ricardo
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.397-414
    • /
    • 2015
  • Three different applications for monitoring displacements in underground structures using a BOTDR-based distributed optical fiber strain sensing system are presented. These applications are related to the strain measurements of (1) instrumented PVC tube designed to be attached to tunnel side wall and ceiling as a sensor; (2) rock bolts for tunnels; and (3) shotcrete lining under loading. The effectiveness of using the proposed strain sensing system is evaluated by carrying out laboratory tests, in-situ measurements, and numerical simulations. The results obtained from this validation process provide confidence that the optical fiber is able to quantify strain fields under a variety of loading conditions and consequently use this information to estimate the behavior of rock mass during mining activity. As the measuring station can be located as far as 1 km of distance, these alternatives presented may increase the safety of the mine during mining process and for the personnel doing the measurements on the field.

On-site Investigation of the Stray Current Condition in DC-Powered Subway System (지하철 직류 급전시스템의 표유전류 실태조사)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.373-375
    • /
    • 2003
  • The subway, a typical electrified transit, is operated by the 1500 V DC-powered system with the overhead positive feeder and the rails negative return. This return path would bring about considerable stray current circuits, that is, from the bottom of rails to sell and then to the station ground, unless the rail-to-soil resistance is sufficiently high. The stray current can cause electrolytic corrosion of subway metallic structures and adjacent underground utilities. In this paper, we reports on-site investigation of the stray current condition, especially influenced by drainage method. The drainage method including both forced drainage and polarized drainage, extensively adopted as a countermeasure for electrolytic corrosion of underground pipelines, was found out to exert a harmful influence upon rail components as well as the pipelines.

  • PDF

Experimental study on applicability of Air-Curtain system in train fire at subsea tunnel rescue station (해저터널 열차 화재 시 구난역 에어커튼 시스템의 성능에 관한 실험 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Visibility is very poor in tunnel fire because of confined space where the fire may easily lead to the mass casuality incident because of fast smoke spread. In this test, air curtain and the fan were installed at rescue station in a bid to make use of rescue station in safe way during the train fire in undersea tunnel and a full-scale fire test was conducted to identify the applicability of air curtain system. Air curtain system was installed at a real rescue station and the test was continued for 2 minutes till heptane which was used as fire source was completely burned out. When air curtain was working, difference in temperature between inside and outside the platform was $160^{\circ}C$ and carbon monoxide measured inside the platform was less than the case of no air curtain system by 160 ppm. Thus a full-scale fire test demonstrated that the air curtain system installed at rescue station in undersea tunnel was able to effectively block the heat and smoke generated from the fire.

Analysis of Changes and Factors Influencing IAQ in Subway Stations Using IoT Technology after Bio-Filter System Installation (IoT 기반 지하역사 내 바이오필터시스템 설치에 따른 실내공기질 변화 및 영향 요인 분석)

  • Yang, Ho-Hyeong;Kim, Hyung-Joo;Bang, Sung-Won;Cho, Heun-Woo;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.410-424
    • /
    • 2021
  • Background: Subway stations have the characteristics of being located underground and are a representative public-use facility used by an unspecified number of people. As concerns about indoor air quality (IAQ) increase, various management measures are being implemented. However, there are few systematic studies and cases of long-term continuous measurement of underground station air quality. Objectives: The purpose of this study is to analyze changes and factors influencing IAQ in subway stations through real-time continuous long-term measurement using IoT-based IAQ sensing equipment, and to evaluate the IAQ improvement effect of a bio-filter system. Methods: The IAQ of a subway station in Seoul was measured using IoT-based sensing equipment. A bio-filter system was installed after collecting the background concentrations for about five months. Based on the data collected over about 21 months, changes in indoor air quality and influencing factors were analyzed and the reduction effect of the bio-filter system was evaluated. Results: As a result of the analysis, PM10, PM2.5, and CO2 increased during rush hour according to the change in the number of passengers, and PM10 and PM2.5 concentrations were high when a PM warning/watch was issued. There was an effect of improving IAQ with the installation of the bio-filter system. The reduction rate of a new-bio-filter system with improved efficiency was higher than that of the existing bio-filter system. Factors affecting PM2.5 in the subway station were the outdoor PM2.5, platform PM2.5, and the number of passengers. Conclusions: The IAQ in a subway station is affected by passengers, ventilation through the air supply and exhaust, and the spread of particulate matter generated by train operation. Based on these results, it is expected that IAQ can be efficiently improved if a bio-filter system with improved efficiency is developed in consideration of the factors affecting IAQ and proper placement.

Evaluation on Indoor Air Quality by Statistical Analysis of Indoor Air Pollutants Concentration in a Seoul Metropolitan Underground Railway Station (서울시 지하역사 실내오염물질 농도자료의 통계분석을 통한 실내공기질 특성 평가)

  • Yim, Bongbeen;Lee, Kyusung;Kim, Jooin;Hong, Hyunsu;Kim, Jangwon;Jo, Kyung-Ho;Jung, Eulgyu;Kim, Inkyu;An, Yeonsun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • The objective of this study was to explore the characteristics of concentration of indoor air pollutants, such as $PM_{10}$, $CO_2$, and $NO_2$, measured by tele-monitoring system in a Seoul Metropolitan underground railway station from January 1, 2008 to December 31, 2012. The annual average concentration of indoor air pollutants actually varied over a wide range and was found to exhibit marked variation with time and measurement sites (tunnel inlet, platform, and concourse). After installing platform screen doors, the average $PM_{10}$ concentration on platform and concourse was decreased by 43.8% and 31.2%, respectively during the study periods. The relationship between the concentration of $PM_{10}$ and meteorological parameters (relative humidity and rainfall) or the Asian dust events was regarded as statistically significant. The correlations between the number of boarding/alighting passengers and $PM_{10}$, $CO_2$, and $NO_2$ were calculated. A p-value of less than 0.01 was regarded as significant except $NO_2$. The I/O ratio of $PM_{10}$ concentration was elevated after a congested time (about 08:00 am). The average I/O ratios of $NO_2$ were observed in concourse and platform on 03:00 am with $1.76{\pm}0.91$ and $1.50{\pm}0.51$, respectively. The average daily variation of standard excess rate of $PM_{10}$ and $NO_2$ concentration in concourse and platform was investigated. The highest standard excess rate was observed on 21:00 (09:00 pm).

A study on the improvement of the air exhaust system at the PSD installed subway station (도시철도 지하역사 PSD 설치에 따른 배기시스템 개선 연구)

  • Kwon, Soon-Bark;Song, Ji-Han;Ryu, Ju-Hwan;Jo, Seung-Won;Oh, Tae-Suk;Bae, Sung-Joon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.353-362
    • /
    • 2015
  • Platform screen door (PSD) installed at underground subway station has reduced the safety accident, but it may cause poor air ventilation condition due to the isolated exhaust duct in the subway tunnel area. In this study, the additional ventilation system was suggested, which can be installed at a void space (i.e., storage room under stairs) of platform in order to improve efficiency of air ventilation rate. Exhausted air from platform was directed to underneath of platform and joined with existing ventilation duct of train exhaust system (TES). One subway station in Seoul city was selected to predict the effectiveness of the suggested lower exhaust system by using the computational fluid dynamics (CFD) analysis. The predicted mean age of air was decreased by 16.5% which proves the improvement of air ventilation efficiency when the suggested lower exhaust system was applied.

Effective Mechanized Harvesting Methods for Underground Parts of Some Medicinal Crops (뿌리이용(利用) 약용작물(藥用作物)의 기계수확(機械收穫) 효율(效率율) 비교(比較))

  • Kim, Young-Guk;Bang, Jin-Ki;Yu, Hong-Seob
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • Angelica gigas, Astragalus membranaceus and Ligusticum chuanxiong have been grown for a long time in Korea as medicinal crops with underground parts. Its harvesting method has been depended entirely on manual labor. Therefore, harvesting involved much work. This study was to determine an effective mechanized harvesting method for underground parts of some medicinal crops by several machines. Labor time was decreased by 61 percent in Angelica gigas and by 70 percent in Astragalus membranaceus by the use of poclain harvester, however, in Ligusticum chuanxiong was decreased 68 percent by multi - root harvester compared with conventional system (manual harvest). The poclain harvester was suitable for harvesting in Angelica gigas and Astragalus membranaceus plots, but multi - root harvester was not satisfactory. Multi - root harvester appeared to be appropriate harvester for Ligusticum chuanxing.

  • PDF