• Title/Summary/Keyword: Underground space construction

Search Result 915, Processing Time 0.025 seconds

Failure Function of Transversely Isotropic Rock Based on Cassini Oval (Cassini 난형곡선을 활용한 횡등방성 암석 파괴함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.243-252
    • /
    • 2017
  • Since the failure behavior of transversely isotropic rocks is significantly different from that of isotropic rocks, it is necessary to develop a transversely isotropic rock failure function in order to evaluate the stability of rock structures constructed in transversely isotropic rock masses. In this study, a spatial distribution function for strength parameters of transversely isotropic rocks is proposed, which is based on the Cassini oval curve proposed by 17th century astronomer Giovanni Domenico Cassini to model the orbit of the Sun around the Earth. The proposed distribution function consists of two model parameters which could be identified through triaxial compression tests on transversely isotropic rock samples. The original Mohr-Coulomb (M-C) failure function is extended to a three-dimensional transversely isotropic M-C failure function by employing the proposed strength parameter distribution function for the spatial distributions of the friction angle and cohesion. In order to verify the suitability of the transversely isotropic M-C failure function, both the conventional triaxial compression and true triaxial compression tests of transversely isotropic rock samples are simulated. The predicted results from the numerical experiments are consistent with the failure behavior of transversely isotropic rocks observed in the actual laboratory tests. In addition, the simulated result of true triaxial compression tests hints that the dependence of rock strength on intermediate principal stress may be closely related to the distribution of the microstructures included in the rock samples.

Study on Driving Simulation of Spoke-type Shield TBM Considering Operation Conditions (TBM 운전조건을 고려한 스포크형 쉴드TBM의 굴진모사 연구)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.456-467
    • /
    • 2019
  • In this study, the discrete element method was used to simulate the excavation of spoke-type shield TBM. The horizontal stress coefficient was used for the ground to simulate the increase of the horizontal stress according to the depth, and the driving conditions were set based on the torque generated from the cutterhead of the TBM to excavate within the operating range. That is, when the value of the torque generated at the cutterhead exceeds the given operating condition, the speed of excavation is constantly reduced, and conversely, the method of increasing the speed of excavation is considered. The change speed of the excavation was given the minimum change requirement in consideration of the driver's review time, and the change was possible according to the excavation conditions. In order to use these conditions, the user-subroutine was considered separately, and the results show that the DEM model were able to analyze the excavation within the considered operating range.

Estimation of Safety in Railway Tunnel by Using Quantitative Risk Assessment (QRA를 이용한 철도터널 방재 안전성 평가)

  • Kim, Do-Sik;Kim, Do-Hyung;Kim, Woo-Sung;Lee, Du-Hwa;Lee, Ho-Seok
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.357-367
    • /
    • 2006
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures grow longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest of safety in long tunnel have a growing and the safety standard of long tunnel is tightening. For that reason, at the planning of long tunnel, the optimum design of safety facility in long tunnel for minimizing the risks and satisfying the safety standard is needed. For the reasonable design of long railway tunnel considering high safety, qualitative estimation for tunnel safety is required. In this study, QRA (Quantitative Risk Assessment) technique is applied to design of long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design in long railway tunnel is tarried out to verifying the QRA technique for two railway tunnels. Thus, the inclined and vertical shaft for escape way and safety facilities in long tunnel are planned, and the risks of tunnel safety for each case are estimated quantitatively.

Numerical Investigation of the Radial Convergence of Circular Tunnel Excavated in Rock Mass for Generalized Hoek-Brown (일반화된 Hoek-Brown 암반에 굴착된 원형터널의 내공변위 특성 분석)

  • Lim, Kwang-Ok;Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.59-71
    • /
    • 2018
  • Since the generalized Hoek-Brown (GHB) function predicts the strength of the jointed rock mass in a systematic manner by use of GSI index, it is widely used in rock engineering practices. In this study, a series of 2D elasto-plastic FE analysis, which adopts the GHB criterion as a yield function, was carried out to investigate the radial convergence characteristics of circular tunnel excavated in the GHB rock mass. The effect of the plastic potential function on the elasto-plastic displacement was also examined. In the analysis, the wide range of both the $K(={\sigma}_h/{\sigma}_v)$ and GSI values are considered. For each K value, the variation of the ratio of sidewall displacement to roof displacement was calculated with varying GSI values and the obtained displacement patterns were analysed. The calculation results show that the displacement ratio significantly depends not only on the K value but also on the range of GSI value. In particular, for lower range of GSI value, the displacement ratio pattern calculated in the elasto-plastic regime is opposite to that predicted by the elasticity theory. In addition, the variation of the radial displacement ratio with GSI value for different types of plastic potential function showed similar trend.

Evaluation of Mechanical Performance of a Segment Lining coated by a Sprayed Waterproofing Membrane by a Full-scale Loading Test (실물 재하실험에 의한 뿜칠 방수 멤브레인이 타설된 세그먼트 라이닝의 역학적 성능 평가)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Park, Byungkwan;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.97-110
    • /
    • 2018
  • The application of sprayed waterproofing membrane with high adhesion and ductility is considered to be promising as a measure for repair and reinforcement of a tunnel structure. Therefore, a powder-type and one-component membrane prototype with high tensile and bond strengths was made in this study. Then, its reinforcement effect on a shield segment was evaluated by carrying out a series of full-scale loading tests of segment specimens on which the membrane was sprayed. From the tests, it was confirmed that the initial cracking loads increased by approximately 34% due to cracking retardation by membrane coating. Even though the increase of failure loads were not so high as cracking loads, the strain-softening behaviors were observed from specimens coated by the membrane. Therefore, it is expected that the membrane coated on the inner surface of a lining might be effective in preventing its brittle failure.

Calculation of Failure Load of V-shaped Rock Notch Using Slip-line Method (Slip-line법을 이용한 V형 암석 노치의 파괴하중 계산)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.404-416
    • /
    • 2020
  • An analytical procedure for calculating the failure load of a V-shaped rock notch under two-dimensional stress conditions was developed based on the slip-line plastic analysis method. The key idea utilized in the development is the fact that the α-line, one of the slip-lines, extends from the rock notch surface to the horizontal surface outside the notch when the rock around the notch is in the plastic state, and that there exists an invariant which is constant along the α-line. Since the stress boundary condition of the horizontal surface outside the rock notch is known, it is possible to calculate the normal and shear stresses acting on the rock notch surface by solving the invariant equation. The notch failure load exerted by the wedge was calculated using the calculated stress components for the notch surface. Rock notch failure analysis was performed by applying the developed analytical procedure. The analysis results show that the failure load of the rock notch increases with exponential nonlinearity as the angle of the notch and the friction of the notch surface increase. The analytical procedure developed in this study is expected to have applications to the study of fracture initiation in rocks through wedge-shaped notch formation, calculation of bearing capacity of the rock foundation, and stability analysis of rock slopes and circular tunnels.

The Analysis of the Possibility for Using Converged Spatial Information(CSI) in National Territorial Planning - The Case Study of LH's Future Business about Land and Housing (융복합 공간정보의 국토계획 분야 활용가능성 분석 - LH 국토·주택관련 미래사업 예시를 중심으로)

  • Choi, Jun Young
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.71-81
    • /
    • 2013
  • Due to explosively increasing utilization in spatial information and a rapid development in geospatial technology related to national territorial and housing, there are increasing demands for converging spatial information on not only urban planning and real estate data but also newly generated data from smart phone, GPS to achieve comparative advantage of national territory. In this paper, we prospect the utilization of Converged Spatial Information(CSI) to future national territorial planning for the purpose of enhancing territorial competitiveness. For this purpose, considering the Korea Land and Housing corporation(LH) takes charge most of government's land and housing development projects, CSI usage of this company's 6 future business domains until 2029 were used as a case study. Also, 7 CSIs derived from literature review were surveyed to find the degree of CSI utilization in the national territorial future. In the analysis result, it was found that 3D data and mobile data among others have higher degree of utilization, and urban and regional development is the most highly utilizable domain for CSIs. After all, to revitalize the use of CSI in national territorial future, it is required to do a balanced construction of territorial use spatial information about marine use, coastal use, underground space besides land use.

Characteristics of the Horizontal Stress and the Possibility of Stress Induced Brittle Failure in Chuncheon-Yanggu Mountainous Region by the In-situ Stress Measurements (현장 측정에 의한 춘천-양구 산악지역 내 수평응력 분포와 취성파괴 가능성에 관한 연구)

  • Bae Seongho;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.157-167
    • /
    • 2005
  • Current initial rock stress state is one of the key factors required to evaluate the stability and failure around an excavated opening and its importance increases as the construction depth become deeper and the scale of the rock structure become larger. In this paper, the study was performed to evaluate the characteristics of the regional stress state at Chuncheon-Yanggu mountainous region, the East-North part of Kyeonggi Massif. Forty nine field stress measurements in 9 boreholes were conducted at the depth from 20 m to 290 m by hydraulic fracturing method. The fracturing tracing works were carried out by acoustic televiewer scanning. The study results revealed that the different intial rock stress states presented at different formation rock type and the excessive horizontal stress state with stress ratio(K) close to 3.0 was measured at the depth of 200 m and deeper in the intrusive unite body of the study area. The results from the investigation of excessive horizontal stress and its effect on failure mode showed that there exist several points where the localized excessive horizontal stresses are big enough to potentially induce brittle failures around the future openings greater than 100 m in depth within the granite body of the study area.

Research Background and Plan of Enhanced Geothermal System Project for MW Power Generation in Korea (MW급 EGS 지열발전 상용화 기술개발사업의 추진 배경 및 계획)

  • Yoon, Woon-Sang;Song, Yoon-Ho;Lee, Tae-Jong;Kim, Kwang-Yeom;Min, Ki-Bok;Cho, Yong-Hee;Jeon, Jong-Ug
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2011
  • Geothermal energy is believed to be an important source among the renewable energy sources to provide the base load electricity. Although there has been a drastic increase in the use of geothermal heat pump in Korea, there is no geothermal power plant in operation in Korea. Fortunately, the first EGS (Enhanced Geothermal System) Project in Korea has started in Dec 2010. This five year project is divided into two stages; two years for exploration and drilling of 3 km depth to confirm the minimum target temperature of 100 degrees, and another three years composed drilling 5 km doublet, hydraulic stimulation of geothermal reservoir with expected temperature of 180 degrees (40 kg/s) and construction of MW geothermal power plant in the surface. This EGS project would be a landmark effort that invited a consortium of industry, research institutes and university with expertises in the fields of geology, hydrogeology, geophysics, geomechanics and plant engineering.

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.