• Title/Summary/Keyword: Underground space

Search Result 3,593, Processing Time 0.021 seconds

Standard Procedures and Field Application Case of Constant Pressure Injection Test for Evaluating Hydrogeological Characteristics in Deep Fractured Rock Aquifer (고심도 균열암반대수층 수리지질특성 평가를 위한 정압주입시험 조사절차 및 현장적용사례 연구)

  • Hangbok Lee;Chan Park;Eui-Seob Park;Yong-Bok Jung;Dae-Sung Cheon;SeongHo Bae;Hyung-Mok Kim;Ki Seog Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.348-372
    • /
    • 2023
  • In relation to the high-level radioactive waste disposal project in deep fractured rock aquifer environments, it is essential to evaluate hydrogeological characteristics for evaluating the suitability of the site and operational stability. Such subsurface hydrogeological data is obtained through in-situ tests using boreholes excavated at the target site. The accuracy and reliability of the investigation results are directly related to the selection of appropriate test methods, the performance of the investigation system, standardization of the investigation procedure. In this report, we introduce the detailed procedures for the representative test method, the constant pressure injection test (CPIT), which is used to determine the key hydrogeological parameters of the subsurface fractured rock aquifer, namely hydraulic conductivity and storativity. This report further refines the standard test method suggested by the KSRM in 2022 and includes practical field application case conducted in volcanic rock aquifers where this investigation procedure has been applied.

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

Application of Eddy Current Sensor for Measurement of TBM Disc Cutter Wear (TBM 디스크커터의 마모량 측정을 위한 와전류센서의 적용 연구)

  • Min-Sung Park;Min-Seok Ju;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.534-546
    • /
    • 2023
  • If the disc cutter is excessively worn or damaged, it becomes incapable of rotating and efficiently cutting rockmass. Therefore, it is important to appropriately manage the replacement cycle of the disc cutter based on its degree of wear. In general, the replacement cycle is determined based on the results of manual inspection. However, the manual measurements has issues related to worker safety and may lead to inaccurate measurement results. For these reasons, some foreign countries are developing the real-time measurement system of disc cutter wear by using different sensors. The ultrasonic sensors, eddy current sensors, magnetic sensors, and others are utilized for measuring the wear amount of disc cutters. In this study, the applicability of eddy current sensors for real-time measurement of wear amount in TBM disc cutters was evaluated. The distance measurement accuracy of the eddy current sensor was assessed through laboratory tests. In particular, the accuracy of eddy-current sensor was evaluated in various environmental conditions within the cutterhead chamber. In addition, the measurement accuracy of the eddy current sensor was validated using a 17-inch disc cutter.

Analysis on Design Change for Backfilling Solution of the Disposal Tunnel in the Deep Geological Repository for High-Level Radioactive Waste in Finland (핀란드 고준위방사성폐기물 심층처분시설 처분터널 뒤채움 설계 변경을 위한 연구사례 분석)

  • Heekwon Ku;Sukhoon Kim;Jeong-Hwan Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.435-444
    • /
    • 2023
  • In the licensing application for the deep geological disposal system of high-level radioactive waste in Finland, the disposal tunnel backfilling has been changed from the block/pellet (for the construction) to the granular type (for the operation). Accordingly, for establishing the design concept for backfilling, it is necessary to examine applicability to the domestic facility through analyzing problems of the existing method and improvements in the alternative design. In this paper, we first reviewed the principal studies conducted for changing the backfill method in the licensing process of the Finnish facility, and identified the expected problems in applying the block/pellet backfill method. In addition, we derived the evaluation factors to be considered in terms of technical and operational aspects for the backfilling solution, and then conducted a comparative analysis for two types of backfill methods. This analysis confirmed the overall superiority of the design change. It is expected that these results could be utilized as the technical basis for deriving the optimum design plan in development process of the Korean-specific deep disposal facility. However, applicability should be reviewed in advance based on the latest technical data for the detailed evaluation factors that must be considered for selecting the backfilling method.

A Study on the Prediction of Uniaxial Compressive Strength Classification Using Slurry TBM Data and Random Forest (이수식 TBM 데이터와 랜덤포레스트를 이용한 일축압축강도 분류 예측에 관한 연구)

  • Tae-Ho Kang;Soon-Wook Choi;Chulho Lee;Soo-Ho Chang
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.547-560
    • /
    • 2023
  • Recently, research on predicting ground classification using machine learning techniques, TBM excavation data, and ground data is increasing. In this study, a multi-classification prediction study for uniaxial compressive strength (UCS) was conducted by applying random forest model based on a decision tree among machine learning techniques widely used in various fields to machine data and ground data acquired at three slurry shield TBM sites. For the classification prediction, the training and test data were divided into 7:3, and a grid search including 5-fold cross-validation was used to select the optimal parameter. As a result of classification learning for UCS using a random forest, the accuracy of the multi-classification prediction model was found to be high at both 0.983 and 0.982 in the training set and the test set, respectively. However, due to the imbalance in data distribution between classes, the recall was evaluated low in class 4. It is judged that additional research is needed to increase the amount of measured data of UCS acquired in various sites.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

Study of the Static Shear Behaviors of Artificial Jointed Rock Specimens Utilizing a Compact CNS Shear Box (Compact CNS shear box를 활용한 모의 절리암석시료의 정적 전단 거동에 관한 연구)

  • Hanlim Kim;Gyeongjo Min;Gyeonggyu Kim;Youngjun Kim;Kyungjae Yun;Jusuk Yang;Sangho Bae;Sangho Cho
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.574-593
    • /
    • 2023
  • In this study, the effectiveness and applicability of a newly designed Compact CNS shear box for conducting direct shear tests on jointed rock specimens were investigated. CNS joint shear tests were conducted on jointed rocks with Artificially generated roughness while varying the fracture surface roughness coefficient and initial normal stress conditions. In addition, displacement data were validated by Digital image correlation analysis, fracture patterns were observed, and comparative analysis was conducted with previously studied shear behavior prediction models. Furthermore, the accuracy of the displacement data was confirmed through DIC analysis, the fracture patterns were observed, and the shear properties obtained from the tests were compared with existing models that predict shear behavior. The findings exhibited a strong correlation with specific established empirical models for predicting shear behavior. Furthermore, the potential linkage between the characteristics of shear behavior and fracture patterns was deliberated. In conclusion, the CNS shear box was shown to be applicable and effective in providing data on the shear characteristics of the joint.

Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction (커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용)

  • Ju-Pyo Hong;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.594-609
    • /
    • 2023
  • TBM (Tunnel Boring Machine) method is gaining popularity in urban and underwater tunneling projects due to its ability to ensure excavation face stability and minimize environmental impact. Among the prominent models for predicting disc cutter life, the NTNU model uses the Cutter Life Index(CLI) as a key parameter, but the complexity of testing procedures and rarity of equipment make measurement challenging. In this study, CLI was predicted using multiple linear regression analysis and tree-based machine learning techniques, utilizing rock properties. Through literature review, a database including rock uniaxial compressive strength, Brazilian tensile strength, equivalent quartz content, and Cerchar abrasivity index was built, and derived variables were added. The multiple linear regression analysis selected input variables based on statistical significance and multicollinearity, while the machine learning prediction model chose variables based on their importance. Dividing the data into 80% for training and 20% for testing, a comparative analysis of the predictive performance was conducted, and XGBoost was identified as the optimal model. The validity of the multiple linear regression and XGBoost models derived in this study was confirmed by comparing their predictive performance with prior research.

Correlation Analysis of Cutter Acting Force and Temperature During the Linear Cutting Test Accompanied by Infrared Thermography (선형절삭시험과 적외선 열화상 측정을 통한 픽커터 작용력과 발생 온도의 상관관계 분석)

  • Soo-Ho Chang;Tae-Ho Kang;Chulho Lee;Hoyoung Jeong;Soon-Wook Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2023
  • In this study, the linear cutting tests of pick cutters were carried out on a granitic rock with the average compressive strength over 100 MPa. From the tests, the correlation between the cutter acting force and the temperature measured by infrared thermal imaging camera during rock cutting was analyzed. In every experimental condition, the maximum temperature was measured at the rock surface where the chipping occurred, and the temperature generated in the rock was closely correlated with the cutter acting force. On the other hand, the temperature of a pick cutter increased up to only 36℃ above the ambient temperature, and the correlation with the cutter force was not obvious. This can be attributed to the short cutting distance under laboratory conditions and the high thermal conductivity of the tungsten carbide inserts. However, the relatively high temperature of the tungsten carbide inserts was found to be maintained. Therefore, it is recommended that a reinforcement between the insert and the head of a pick cutter or the quality improvement of silvering brazing in the production of a cutter is necessary to maintain the high cutting performance of a pick cutter.

Case Study of Shield Tunnel Construction : Incheon Metro Line 1 Geomdan Extension Phase 1 Project (쉴드TBM 터널 시공 사례 : 인천도시철도1호선 검단연장선 1공구)

  • Byungkwan Park;Chaeman Joo;Dohak Huh;Hyunsup Song;Gwangsu Joo;Dohoon Kim;Minsang Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2024
  • The Incheon Metro Line 1 Geomdan Extension Phase 1 is the first project in South Korea where both a roadheader and TBM (Tunnel Boring Machine) are being used together. The shield TBM tunnel section is 1,057 m long, and is mostly composed of rock, including the section beneath the Airport Railroad and the Gyeongin Ara Waterway. A 7.8 m earth pressure balance shield TBM was used for tunnel excavation. The average monthly advance rate for both the North and South tracks is 239.1 m, with a maximum monthly advance rate of 334.5 m. This technical article comprehensively evaluates the productivity of the shield TBM, focusing on the TBM excavation performance. Above all, it aims to provide useful reference material for the successful execution of shield TBM tunnel construction.