• Title/Summary/Keyword: Underground seawater

Search Result 44, Processing Time 0.023 seconds

Numerical Modeling of Seawater Intrusion in Coastal Aquifer (연안 대수층에서 해수침투 축성 해석)

  • 이연규;이희석
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • Coastal aquifers may serve as major sources fur freshwater. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. The management of groundwater in coastal acquifers means making decision as to the pumping rate and the spatial distribution of wells. Several numerical techniques for flow and solute transport simulation can provide the means to achieve this goal. As a basic study to predict the intrusion of seawater in coastal phreatic aquifers, the coupled flow and solute transport analysis was conducted by use of the 3-D finite element code, SWICHA. In order to understand how the location and the shape of freshwater-seawater transition zone were affected by the boundary conditions and hydrogeologic variables, parametric study was carried out.

The Study on Constructing Underground Wall to Prevent Seawater Intrusion on Coastal Areas (지하수댐 물막이벽 시공법과 해안지역 염수침입 방지기술 개선 방안)

  • 부성안;이기철;김진성;정교철;고양수
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.215-234
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control, Groundwater Dam had initiated its construction by RDC(former KARICO) in early eighties in Korea and 4 of it in total were added more until late eighty. However, this technique has shrunken its application due to gradually decreased yield rate after sever years of construction. After we studied several existing sites precisely, we concluded that the main reason of decreasing yield rate was come form engineering roughness on construction in early nineties. Theoretically, the technique itself seemed to be little detectives however, there were a little application in the fields in Korea. With the recent advance in engineering fields, those defects in construction would be no longer obstacle to construct underground wall and the technique could be a one of major ground water production technique in the future. It is essential to study following items thoroughly before select the appropriate site. The topography and the site of the underground wall, aquifer distribution, the specific technique for wall construction to block groundwater flow effectively and strict quality control during construction are critical. The surface and ground water monitoring data should be collected. Sustainability of the Groundwater Dam with huge groundwater abstraction in long term should be based on the long-term water balance analysis for each site. The water quality, environmental effect analysis and maintenance achedule should be also analyzed and planned in prior. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.

Effect of seawater on the applicability of a slurry shield TBM (해수가 슬러리 쉴드 TBM 공법 적용성에 미치는 영향)

  • Ryu, Young-Moo;Kim, Hae-Mahn;Kim, Do-Hyung;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Formation of filter cake with little slurry penetration into the tunnel face ground is an essential factor to successfully apply the slurry shield tunnel boring machine (TBM) for tunnelling work. However, when the bentonite slurry is in contact with seawater, it is not easy to guarantee the filter cake formation due to decrease of the swelling volume and viscosity of the slurry. In this study, in order to evaluate the effect of the seawater on the applicability of the slurry shield TBM method, the slurry injection tests were carried out with the variation of seawater percentage contained in the slurry samples as well as the variation of soil types. And then, the effect of these two factors on the slurry clogging phenomena was theoretically and experimentally figure out. As a result, it was found that the value of the slurry clogging criteria (SCC) indicating the applicability of the slurry shield TBM significantly decreases up to 67% as the percentage of seawater increases from 0% up to 20%. In addition, it was found to be necessary to take into account both the characteristics of slurry and soil types together when judging the applicability of the slurry shield TBM method by assessing the slurry penetration characteristics that will occur during tunnelling work.

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.

Experimental study on applicability of compressed air foam fire water using seawater in train fire at subsea tunnel rescue station (해저터널 구난역 열차화재시 압축공기포 소화용수의 해수 적용성에 관한 실험 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.705-715
    • /
    • 2017
  • In this study, applicability of compressed air form (CAF) fire water was verified in a bid to use the undersea effluent as fire water. Foam collector was fabricated in accordance with KS B ISO 7203-1 (Specification for low expansion foam concentrates for top application to water-immiscible liquids) and the test was conducted using fresh water as fire water for 19 times and using seawater as fire water 15 times that totaled 34 times. Foam reduction time was 237.73 seconds on average with fresh water and 215.60 seconds with seawater, which proved the applicability of CAF fire water using seawater. Besides, window breaker was fabricated to directly extinguish the fire in train and a full-scale fire test was conducted three times. At the final 3rd test, window glass was broken in 2 seconds to make the hole for fire extinguishing and suppressed the fire in 3 seconds using CAF fire extinguisher.

The Strength Properties of Chemical Attack of Shotcrete using the Aluminate Accelerator (알루미네이트계 급결제를 사용한 숏크리트의 화학적침식에 대한 강도 특성)

  • Kim, Seong-Soo;Lee, Jung-Bae;Yoon, Ha-Young;Han, Seung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.245-248
    • /
    • 2006
  • This study investigated the strength of shotcrete with aluminate accelerator to connect with the proper repair methods or monitoring skills in subway, cable tunnel and underground storage. In order to approach these goals, the shotcrete specimens were exposed to acid, sulfate and seawater environments, and strength properties of the shotcrete suffering from the attacking sources were examined.

  • PDF

A study on the technology and application of cathodic protection to reinforced concrete (철근콘크리트의 방식기술 및 음극방식의 적용에 관한 고찰)

  • Jeong, Jin-A;Ha, Ji-Myung;Oh, Se-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.599-604
    • /
    • 2016
  • Cathodic protection was first introduced as a technology for preventing the corrosion of metals in seawater and underground environments in the early 19th century, eventually leading to the introduction of cathodic protection to the reinforced concrete technology sector in the 1970s. In the 1990s, it was demonstrated that the effectiveness of corrosion protection had increased through a number of developments and studies. Recently, cathodic protection was applied to some reinforced concrete structures and has gradually expanded in scope in South Korea. Technical expertise is necessary to understand the underlying electrochemical principles and also because cathodic protection is important for normal physical maintenance. Therefore, in this study, we introduce the technical details and examples of applications of the cathodic protection of reinforced concrete, including the basic theory, principles, and other criteria.

Risk analysis and countermeasures for subsea tunnel planning of national road 77 construction work between Abhae and Hwawon (압해-화원 간 국도77호선 건설공사 해저터널 계획을 위한 리스크 분석 및 대책방안)

  • Kim, Young-Joon;Kim, Zu-Cheol;Lee, Jae-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.15-38
    • /
    • 2022
  • Recently, tunnel technology in Korea has shown various achievements such as long tunnel and large section by tunnel construction using TBM in Korea and abroad. Especially subsea tunnels are frequently designed and constructed. The Ga-deok subsea tunnel was completed in December 2010, and the Incheon North Port Tunnel was opened and operated in 2017, and the Bo-ryeong subsea tunnel between Dae-cheon Port and Won-san Island will be completed in 2021. In foreign countries, many subsea tunnels have been constructed and operated in such as Norway and Japan. The main technical problem in the construction of subsea tunnel is to secure stability due to high water pressure conditions and large-scale seawater inflow in fault zones and weak zones. In this paper, various risk factors and solutions are described in the subsea tunnel planning of national road 77 construction work between Abhae and Hwawon.

A Study on the Performance Evaluation of Polypropylene Fiber Reinforced Concrete (폴리프로필렌섬유보강 콘크리트의 성능평가 연구)

  • Lee, Soo-Yul;Park, Yeon-Jun;Kim, Su-Man;You, Kwang-Ho;Jang, Sung-Il;Suh, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.378-389
    • /
    • 2010
  • Submarine tunnels are affected by the surrounding environments more than regular tunnels. Especially, they are often vulnerable to damage by salt in seawater. Seawater is more likely to affect reinforcing rods and steel fibers than concrete. Recently the usage of anti-corrosive fibers increases in the tunnel which is subject to the possibility of damage. By comparing the capability of polypropylene fibers with that of steel fibers, the proper mixture ratio is decided and the supporting capability of polypropylene fibers was tested using round panel and beam specimens. The results of this study can be of great use in selecting the fiber material and designing of fiber reinforced shotcrete of submarine tunnels.

Groundwater Flow Characteristics Affected by the Seawater Intrusion near Simulated Underground Storage Caverns in the Coastal Area (임해지역의 모의 지하 비축 시설 주변에서 해수 침투에 의한 지하수 유동 특성)

  • 황용수;배현숙;서동일;김경수;김천수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.17-29
    • /
    • 1999
  • There are three major processes to impact the groundwater flow near underground storage caverns in the coastal area; effect of topography, effect of sea water intrusion, and effect of excavation. In this paper, the effects of three items were numerically studied to identify the major cause for altering the flow pattern. It turned out that the excavation is the most significant effect on the groundwater flow system. The groundwater pressure distributions and consequent groundwater pathways were significantly altered near the openings. By increasing the groundwater pressures from water curtain holes, the potential leakage of storage cavern was properly prevented

  • PDF