• Title/Summary/Keyword: Underground research tunnel

Search Result 671, Processing Time 0.024 seconds

Estimation of the Mechanical Properties of the Concrete Tunnel Lining by Drilling Resistance Test (천공저항시험에 의한 콘크리트 터널라이닝의 역학적 특성 추정)

  • Choi, Soon-Wook;Sung, Yun-Chang;Cheong, Ho-Seop;Chang, Soo-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.87-98
    • /
    • 2007
  • For the quick rehabilitation of a fire-damaged tunnel structure, it is the most important procedure to investigate the fire-induced damaged zone rapidly. This study aims to propose a new drilling resistance testing method by which mechanical properties of tunnel concrete lining altered by high temperature can be estimated easily and continuously. Especially, it alms to derive the relationships to estimate mechanical properties of mortar and concrete materials from drilling parameters. To obtain the optimum testing condition, a series of drilling resistance tests were carried out for mortar specimens. When the rotation per minute of drill bit, tile penetration rate and the bit diameter were 1,300 rpm, 1.40 mm/sec, and 10 mm respectively, the deviation of measured drilling resistance forces was minimal. Under the optimum testing condition, the relationships between drilling resistance and mechanical properties of mortar specimens were shown to be very favorable. The concept of replacing a mean value of resistance farces measured during drilling with the resistance energy was proposed to consider the effects of randomly distributed aggregates inside a concrete material on drilling resistance. When the concept was applied to concrete materials, a favorable relationship between actual compressive strength and drilling resistance energy was also successfully derived.

Investigating the Stress on Fault Plane Associated with Fault Slip Using Boundary Element Method (경계요소법을 이용한 단층 슬립에 따른 단층면 응력에 관한 연구)

  • Sung Kwon, Ahn;Hee Up, Lee;Jeongjun, Park;Mintaek, Yoo
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.598-610
    • /
    • 2022
  • Avoiding a fault zone would be a best practice for safety in underground construction, which is only sometimes possible because of many restrictions and other field conditions. For instance, there is an ongoing conception of Korea-Japan subsea tunnels that inevitably cross a massive fault system in the Korea Strait. Therefore it was deemed necessary to find an efficient way of predicting the likely behaviour of underground structures under fault slip. This paper presents the findings from simple numerical analysis for investigating the stress induced at a normal fault with a dip of 45 degrees. We used a boundary element software that assumed constant displacement discontinuity, which allowed the displacement to be estimated separately at both the fault's hangingwall and footwall sides. The results suggested that a principal stress rotation of 45 degrees occurred at the edges of the fault during the slip, which was in agreement with the phenomenon for fault plane suggested in the body of literature. A simple numerical procedure presented in this paper could be adopted to investigate other fault-related issues associated with underground structure construction.

Numerical analysis study of reinforced method (loop type) at the double-deck tunnel junction (복층터널 분기부에서의 보강공법(루프형 강선)에 따른 수치해석 연구)

  • Lee, Seok Jin;Park, Skhan;Lee, Jun Ho;Jin, Hyun Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.823-837
    • /
    • 2018
  • Congestion of the city with the rapid industrial development was accelerated to build complex social infrastructure. And numerous structures have been designed and constructed in accordance with these requirements. Recently, to solve complex urban traffic, many researches of large-diameter tunnel under construction downtown are in progress. The large-diameter tunnel has been developed with a versatile double-deck of deep depth tunnel. For the safe tunnel construction, ground reinforcement methods have been developed in the weakened pillar section like as junction of tunnel. This paper focuses on evaluation of the effects of new developed ground reinforcement methods in double-deck junction. The values of reinforcement determined from the existing and developed methods were compared to each other by numerical simulation.

Structure damage estimation due to tunnel excavation based on indoor model test

  • Nam, Kyoungmin;Kim, Jungjoo;Kwak, Dongyoup;Rehman, Hafeezur;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Population concentration in urban areas has led traffic management a central issue. To mitigate traffic congestions, the government has planned to construct large-cross-section tunnels deep underground. This study focuses on estimating the damage caused to frame structures owing to tunnel excavation. When constructing a tunnel network deep underground, it is necessary to divide the main tunnel and connect the divergence tunnel to the ground surface. Ground settlement is caused by excavation of the adjacent divergence tunnel. Therefore, predicting ground settlement using diverse variables is necessary before performing damage estimation. We used the volume loss and cover-tunnel diameter ratio as the variables in this study. Applying the ground settlement values to the settlement induction device, we measured the extent of damage to frame structures due to displacement at specific points. The vertical and horizontal displacements that occur at these points were measured using preattached LVDT (Linear variable differential transformer), and the lateral strain and angular distortion were calculated using these displacements. The lateral strain and angular distortion are key parameters for structural damage estimation. A damage assessment chart comprises the "Negligible", "Very Slight Damage", "Slight Damage", "Moderate to Severe Damage", and "Severe to Very Severe Damage" categories was developed. This table was applied to steel frame and concrete frame structures for comparison.

Stability analysis of shield tunnel segment lining by field measurement and full scale bending test (실대형 하중재하 시험 및 현장계측을 통한 쉴드터널 세그먼트 안정성 분석)

  • Lee, Gyu-Phil;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.611-620
    • /
    • 2019
  • The shield tunnel was mostly applied to cable tunnel with a diameter of 3~4 m, recently 7.8 m diameter shield tunnel was constructed in the lower section of the Incheon International Airport runway and is planning or under construction to roads and railway tunnels in the lower section of the Han River. Segments are also becoming larger as the shield tunnel cross-section increases, which causes a number of problems in the design, construction, and performance evaluation of segments. In this study, segment lining structural safety, criteria for serviceability check considering axial forces and quality control method for approximately 8 m in diameter shield tunnel were reviewed by field measurements and full scale bending test.

Analysis of segment lining cracking load considering axial force by varying boundary condition (경계조건 변화에 의해 발생한 축력을 고려한 세그먼트 라이닝의 균열하중 분석)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Kang, Tae-Sung;Chang, Soo-Ho;Choi, Soon-wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In the design of tunnel segment structure, axial and moment forces are considered as significant forces. Since axial force is much greater than moment force, the whole section of segment remains in compression. Therefore crack width can be reduced. But the axial force is not considered in criteria for serviceability check. This fact leads service condition more severe compared to ultimate condition and makes the required steel reinforcement increase to meet the serviceability criteria. In this study, the effect of axial force on serviceability of tunnel segment is evaluated, experimentally and analytically. Mock-up tests on segments with actual size were performed and investigated in terms of initial crack resistance. The evaluation proves that more comprehensive design could be achieved when the axial force is considered in the procedure for the serviceability check in design of tunnel segment.

Numerical approach to elucidate the behavior of seismic lining adopting hyperelastic material model (수치해석을 이용한 초탄성 재료 기반 면진라이닝의 거동 규명)

  • Sung Kwon Ahn;Hee Up Lee;Jeongjun Park;Jiwon Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.495-507
    • /
    • 2023
  • Considering the continuing discussion about the Korea-Japan undersea tunnel, it is necessary to conduct a scientific investigation into tunnel deformation associated with large ground movements at fault. This paper presents findings obtained from numerical experiments to investigate a seismic lining that adopts rubber-like material. We utilized the user material subroutine to obtain the deformation gradient of the hyperelastic material. Additionally, polar decomposition is used to analyze the results, where the data is displayed on a series of two-dimensional planes using the principal direction, which facilitates a better insight into the deformation. Tunnel engineers could refer to this paper for the procedure to investigate the deformation of hyperelastic material.

Research on Calculation of Ventilation Airflow in Underground Excavation Workings using Diesel Equipments (디젤장비를 사용하는 지하굴착 작업장의 입기량 산정방법 연구)

  • 김복윤;조영도
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.48-56
    • /
    • 1995
  • Recently, most of the underground excavation works are adopting heavy duty mobile diesel equipments which have outstanding merits in view of efficiency. However, these equipments are causing hygienic problems to the workers due to the various hazardous exhaust contaminants. Considering that there are always dead end workings in underground excavation sites, it is very important how to supply enough airflow to the workings to dilute diesel exhaust contaminants. This paper introduced the theoritical mechanism and actual trends of exhaust contaminants of diesel equipments under operation at local mines and suggested the design method of intake air volume in underground excavation workings using diesel equipments.

  • PDF

Reinforcement of shield tunnel diverged section with longitudinal member stiffness effect (종방향 부재의 강성효과를 고려한 쉴드 터널 분기부 보강 및 해석기법)

  • Lee, Gyu-Phil;Kim, Do
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.675-687
    • /
    • 2019
  • In recent years, the needs for double deck-tunnels have increased in large cities due to the increase in traffic volume and high land compensation costs. In Korea, a network type tunnel which is smaller than general road tunnels and crosses another tunnel underground is planned. In the shield tunnel joints between the existing shield tunnel and the box-type enlargement section, a partial steel-concrete joint is proposed where the bending moment is large instead of the existing full-section steel joint. In order to analysis the enlargement section of the shield tunnel diverged section to reflect the three-dimensional effect, the two-dimensional analysis model is considered to consider the column effect and the stiffness effect of the longitudinal member. A two-dimensional analysis method is proposed to reflect the stiffness of the longitudinal member and the column effect of the longitudinal point by considering the rigidity of the longitudinal member as the elastic spring point of the connecting part in the lateral model. As a result of the analysis of the model using the longitudinal member, it was considered that the structural safety of the partial steel-concrete joint can be secured by reducing the bending moment of the joint and the box member by introducing the longitudinal member having the stiffness equal to or greater than a certain value.

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.