• Title/Summary/Keyword: Underground railway tunnel

Search Result 132, Processing Time 0.026 seconds

Article - 환기.방재측면에서의 초장대.대심도 터널에 관한 고찰

  • Lee, Hang
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.54
    • /
    • pp.41-55
    • /
    • 2011
  • The current railway projects under plan, design, or construction have been designed as 'very long and deep underground tunnel'. Therefore, it is reasonable that the standards for preventing disaster in such conditions should be intensified in order to avoid repeating the same failure which happened in Daegu subway disaster, Although we consent to the opinion that nothing can compete with human being's life, it is very difficult to protect the life from all of potential disasters perfectly in railway fields because the excessive standards can result in excess construction cost, which can bring about cancelation of the project itself eventually. Therefore optimized disaster design standard is required to negotiate the conflict between economical cost and social tolerance limitation simultaneously.

  • PDF

Modeling the Effect of Excavation Sequence and Reinforcement on the Response of Tunnels with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 굴착순서 및 지반보강이 터널의 거동에 미치는 영향 모델링)

  • 김용일;김영근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • This paper presents two new extensions to the DDA method. The extensions consist of sequential loading or unloading and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of the underground excavation of the Unju Tunnel of Kyungbu High Speed Railway Project in Korea were carried out to evaluate the influence of excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three new extensions can now be used as d practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Development of 3D absolute displacement monitoring system and its application at the stage of tunnel construction (터널 시공 중 3차원 절대변위 계측시스템의 개발과 적용)

  • Bang, Joon-Ho;Kim, Ki-Young;Jong, Yong-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.229-240
    • /
    • 2007
  • The 3D absolute displacement monitoring system has been developed to analyze the tunnel convergence measured under construction of underground structures and to manage effectively the measured data. The system is comprised of the total station, the anchor-typed target pin and the 3D absolute displacement measurement and management program. In this paper, the types and specifications of the 3D total station were presented. The anchor-typed target pin, an improved model of traditional one, was developed and its sightable distance and measurement accuracy were checked by field tests. Also a 3D absolute displacement measurement and management program, TEMS 3D, was developed to provide some analysis tools including the trend and influence lines. L/C ratio, S/C ratio and the like. The developed system was applied the construction stage of a railway tunnel for testing purpose. It is verified that the developed system is capable of predicting weak zones ahead of tunnel face by comparing with results of TSP (Tunnel Seismic Prediction) survey.

  • PDF

The stability analysis on large sectional tunnel station considering construction steps (시공단계를 고려한 대단면 정거장 터널 안정성 해석)

  • Kang, Eun-Gu;Kim, Yang-Woon;Ahn, Kyeong-Cheol;Han, Myeong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1062-1068
    • /
    • 2009
  • Urban construction has numerous difficulties due to ground weakness and various complaints from third party, so it is not economically efficient and constructability is not favorable. Therefore, underground, which has good ground conditions, was used for construction field and facilities such as stations, and they are scaled up to enhance accommodation of facility limitation and function of stations. Large section tunnel station construction has numerous risk factors such as work boundary of excavation equipment, a relaxation of stress concentration, a safety plan of tunnel stability, and so on. Therefore, by using large section tunnel station stability analysis considering construction step, we expect to analyze the latent problem during construction, and to stabilize a future project plan of a large section structure design by using an auxiliary method and a support design.

  • PDF

Optimum Support Pattern Design of the Tae-Gu Subway Tunnel (대구 지하철 터널의 적정지보패턴 선정에 관한 연구)

  • 지왕률;최재진
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • This is a Double-Track Railway tunnel in typical Tae-Gu black and gray shale forming part of the No.1 Line of the Tae-Gu Subway. The main fault zone at tunnel is a moderately to highly weathered and closely jointed zone, 0.5 m wide with associated paralled jointing which is slickensided and fractured. After excavation by blasting, the soft rocks should need to be reinforced with optimal supporting pattern which might be better redesigned through the consideration of the results of in-situ rock measurements at the field. Performances fo the field tests included Point Load Test, Schmidt Hammer Test, and field joint measurement gave the detail data for the optimum support design and safe excavation of the No.1 Line of Tae-Gu Subway at the No.1-7 consturction site adn the safety of this redesigned supports system was analysed by the FDM program FLAC.

  • PDF

Pre-grouting for CHI of EPB shield TBM in difficult grounds: a case study of Daegok-Sosa railway tunnel (복합지반 EPB TBM 커터교체를 위한 그라우팅 수행 사례)

  • Kang, Sung-Wook;Chang, Jaehoon;Lee, Jae-Won;Kim, Dae-Young;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.281-302
    • /
    • 2021
  • Railway projects have been consistently increasing in Korea. In relation to this trend, the mechanized tunneling using Tunnel Boring Machine (TBM) is preferably applied for mining urban areas and passing under rivers. The TBM tunneling under difficult grounds like mixed faces with high water pressure could require ground improvements for stable TBM advance or safe cutter head intervention (CHI). In this study, pre-grouting works for CHI in Daegok-Sosa railway project are presented in terms of the grouting zone design, the executions and the results, the lessons learned from the experience. It should be mentioned that the grouting from inside TBM was carried out several times and turned out to be inefficient in the project. Therefore, grouting experiences from the surface are highlighted in this study. Jet grouting was implemented on CHI points on land, while permeation grouting off shore in the Han River, which mostly allow to access the cutter head of TBM in free air with stable faces. The results of CHI works have been analyzed and the lesson learned are suggested.

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

Experimental Study on the Slanted Portals for Reducing the Micro-pressure Waves in High-speed Train-tunnel System(I) (고속철도 터널에서 경사갱구 입구의 미기압파 저감성능에 관한 연구(I))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to the compression wave is a special physics phenomena created by high-speed train-tunnel interfaces. A among methods for the purpose of reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum slanted portal using the moving model rig. According to the results, the maximum value of micro pressure wave is reduced by 19.2% for the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% for the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

Stability analysis of shield tunnel segment lining by field measurement and full scale bending test (실대형 하중재하 시험 및 현장계측을 통한 쉴드터널 세그먼트 안정성 분석)

  • Lee, Gyu-Phil;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.611-620
    • /
    • 2019
  • The shield tunnel was mostly applied to cable tunnel with a diameter of 3~4 m, recently 7.8 m diameter shield tunnel was constructed in the lower section of the Incheon International Airport runway and is planning or under construction to roads and railway tunnels in the lower section of the Han River. Segments are also becoming larger as the shield tunnel cross-section increases, which causes a number of problems in the design, construction, and performance evaluation of segments. In this study, segment lining structural safety, criteria for serviceability check considering axial forces and quality control method for approximately 8 m in diameter shield tunnel were reviewed by field measurements and full scale bending test.

Review of fire resistance evaluation and fire resistance method of concrete segment lining for fire in tunnel (터널 내 화재발생에 대한 콘크리트 세그먼트 라이닝의 내화성 평가 및 내화방법에 대한 고찰)

  • Moorak Son;Juhyun Cheon;Youngkeun Cho;Bumjoo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.121-139
    • /
    • 2023
  • Various tunnels such as road, subway, and railway are under construction and operation. Various types of linings are used for structural stability of tunnel structures, and concrete segment linings are mainly installed in TBM tunnel construction. In this paper, when a fire occurs in a tunnel, the impact on the concrete segment lining, which is the structure in the tunnel, and related standards, fire resistance evaluation and fire resistance method are investigated through literature review and related contents are presented. Through this, it is intended to provide an information for practitioners to secure the safety of concrete segment linings against tunnel fires.