• 제목/요약/키워드: Underground power transmission cable

검색결과 182건 처리시간 0.023초

고온초전도 전력케이블 적용효과 검토 (A Study on the Application Effects of HTS Power Cable)

  • 성기철;조전욱;김해종;권영길;최상봉;류강식;김봉태;유인근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권2호
    • /
    • pp.32-36
    • /
    • 2000
  • In this study, we performed the long-term expansion planning for the conceptual design of HTS power cable in Seoul area. In Korea, underground power cable has been required gradually with increasing demand of electric power transmission density and low loss characteristics in the comparison with a conventional power cables, so we assumed that the HTS power cable is applied between the downtown area and the outskirts of the city for the large power transmission capacity. This paper is to show the effects of HTS power cables in Seoul based on the power system analysis.

  • PDF

고온초전도 케이블의 대도시 계통 적용을 위한 송전용량과 전압계급의 검토 (A Study on Capacity and Voltage Class to supply HTS Power Transmission Cable to Metropolitan Area)

  • 최상봉;김대경;정성환;성기철;김학만;김태현;김종율
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.211-214
    • /
    • 2002
  • It becomes difficult and high in cost to construct new ducts and/or tunnels for power cable in Metropolitan area. This paper presents the possible application of a HTS superconducting power cable for transmitting electric power in metropolitan areas, reflecting its important distinction such as compactness for installation in underground ducts and considerably economical efficiency comparable to present underground cables. In this paper, review of transmission capacity and voltage class of compact HTS cable which should be applied to existing ducts was performed.

  • PDF

345kV 미금${\sim}$성동변전소간 장거리 지중송전선로 준공 (The first installation of 345kV long-length transmission line between Mikyum and Sungdong substation in Korea)

  • 김영;성정규;고창성;한기종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1731-1733
    • /
    • 1997
  • The first 150lkV underground transmission line of Korea was installed between Danginri and Yongsan substation in 1974. Since then, the underground transmission lines of about 720 circuit-km had been installed up to 1995. As the national economy has been enlarged and the population of city has been rapidly increased, the demand of an electric power has been very increased. Therefore the first 345kV long-length transmission line of Korea was installed between Mikyum and Sungdong substation on Jan., 1997. This paper describes the design of the 345kV oil-filled cable and its accessories, the design of the system, the methods of installation, field tests, and the future trends of the underground transmission line in Korea.

  • PDF

무선센서를 이용한 지하전력구의 케이블 접속함 표면온도감시시스템 개발 (A Development of Surface Temperature Monitoring System for Underground Tunnel Cable Joint using Wireless Sensor)

  • 김영일;송재주;신진호;이봉재;조선구
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1879-1884
    • /
    • 2007
  • In the electric power industry, it is important that the supply of energy must be guaranteed. Many power utilities control and supervise the transmission line to avoid power failures. In case of underground tunnel, some troubles are reported in cable joint. To stabilize the power, it is needed to monitor the cable joint. Many researches of cable joint monitoring have been going on by partial discharge measurement and temperature measurement using optical cable. These methods need much cost to install and maintain, so it is only used in critical transmission line. In this research, we use wireless sensor technology, because of its low cost and easy installation. We develop the temperature monitoring system for cable joint. Temperature sensor is installed on the surface of cable joint and sends data to server through router node using wireless network. Generally Ad hoc routing is searched in wireless network. However, in this research, we design the static linear routing mechanism, which is suitable for electric power line monitoring and analyze the life time of the sensor node by measuring the amount of the battery consumption.

지중케이블 선로 임피던스 실측 및 분석 (Measurement and Analysis of Line Impedance in Underground Cables)

  • 하체웅;김정년
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.205-207
    • /
    • 2003
  • The line impedance is important data that is applied in all analysis fields of electric power system like power flow, fault current, stability and relay calculation etc. Usually, impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding wires, and earth resistance. Therefore, if there is a fault in cable system, these terms will severely be caused much error to calculation of impedance. Therefore, the line impedance were measured for this study in an actual power system of underground cables, and were analyzed by a generalized circuit analysis program EMTP for comparison with the measured value. These analysis result is considered to become foundation of impedance calculation for underground cable.

  • PDF

154kV 지중송전케이블에서 Wavelet을 이용한 Fault Location에 관한 연구 (A Study on Fault Location Using Wavelet in 154kV Transmission Power Cable)

  • 이준성;이종범;문성철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.437-439
    • /
    • 2000
  • This paper describes a fault location technique using wavelets in underground transmission cable system Estimation of fault location is performed using data sampled at two ends of underground system. In the case of 50% fault of total underground transmission line, fault location is calculated using sampled single-end data in underground transmission line. Traveling wave is utilized in capturing the travel time of the transients along the monitored lines between the relay and the fault point. This travel time information is provided by the wavelet. Simulation was performed using EMTP. ATP Draw and MATLAB. The results of fault location shown in this paper will be evaluated as an effective suggestion for fault to location in real underground transmission line.

  • PDF

실계통 345kV 지중송전선 대칭좌표 임피던스의 해석 (Analysis of Sequence Impedances of 345kV Cable Transmission Systems)

  • 최종기;안용호;윤용범;오세일;곽양호;이명희
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

154 kV 지중송전선로의 고정용 금구류에서 발생하는 와전류 및 히스테리시스 손실 분포 해석 (Analysis of Eddy Current and Hysteresis Loss Distribution from Fixing Structure of 154 kV Underground Transmission Cable)

  • 송혜은;임상현;김경윤;박관수
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2018
  • 최근 도시미관과 편리성을 위해 지중송전선로의 사용이 확대되고 있다. 하지만 지중송전선로에서 발생하는 손실, 특히 24시간 상시 운영되는 3상 케이블을 지지하고 있는 금구류에서 발생하는 손실에 관한 연구는 부족하다. 케이블지지 금구류는 도전율과 투자율을 가지는 재질로 구성되어지기 때문에 케이블에 흐르는 전류에 의한 자기장 때문에 와전류 및 히스테리시스 손실이 발생하게 된다. 이 때 발생하는 손실은 전력 에너지 전달 효율에 악영향을 미치기 때문에 손실에 대한 연구가 필요하다. 따라서 본 논문에서는 3차원 유한요소해석을 통하여 케이블의 주변 금구류에서 발생하는 와전류 및 히스테리시스 손실에 대하여 분석하였다.

Review of the Conceptual Design for the Use of HTS Power Transmission Cable for a Metropolitan Area

  • Park, Sang-Bong
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권2호
    • /
    • pp.63-69
    • /
    • 2003
  • The necessity of compact high temperature superconducting cables is more keenly felt in densely populated metropolitan areas. Because the compact high-temperature superconducting cables can be installed in ducts and tunnels, thereby reducing construction costs and making the use of underground space more effective, the effect of introducing it to the power system will be huge. Seoul, Korea, is selected as a review model for this paper. The loads are estimated by scenario based on a survey and analysis of 345kV and 154kV power supply networks in this area. Based on this, the following elements for an urban transmission system are examined. (1) A method of constructing a model system to introduce high-temperature superconducting cables to metropolitan areas is presented. (2) A case study is conducted through the analysis of power demand scenarios, and the amount of high-temperature superconducting cable to be introduced by scenario is examined. (3) The economy involved in expanding existing cables and introducing high-temperature superconducting cables(ducts or tunnels) following load increase in urban areas is examined and compared., and standards for current cable ducts are calculated. (4) The voltage level that can be accommodated by existing ducts is examined.

Insulation Design and Reliability Evaluation of ±80kV HVDC XLPE Cables

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1002-1008
    • /
    • 2014
  • This paper describes insulation design and its reliability evaluation of ${\pm}80kV$ HVDC XLPE cable. Recently, the construction of HVDC transmission system, which is combined overhead line with underground cable, has been completed. This system is installed with existing 154 kV AC transmission line on the same tower. In this paper, the lightning transient analysis is firstly reviewed for selection of basic impulse insulation level and nominal insulation thickness. Then the electrical performance tests including load cycle test and superimposed impulse test based on CIGRE TB 496 are performed to evaluate the reliability of newly designed HVDC cable. There is no breakdown for ${\pm}80kV$ HVDC XLPE cable during electrical performance test. Finally, this system is installed in Jeju island based on successful electrical performance test (Type test). After installation tests are also successfully completed.