• Title/Summary/Keyword: Underground power cables

Search Result 191, Processing Time 0.024 seconds

The first installation of long-distance underground transmission line with 345kV XLPE Cable in Korea (장거리 345kV XLPE 케이블 지중송전선로의 준공)

  • Shin, H.D.;Park, K.R.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.376-378
    • /
    • 2003
  • Since the first underground transmission line of Korea was installed between Danginri and Yongsan substations in 1974, the two types of underground transmission power cables, oil-filled and XLPE, have been applied for underground transmission lines. As the manufacturing technologies of XLPE cable have been improved and the simplicity of installation and maintenance has been focused on, the installations of XLPE cables have been largely increased since the mid 1990's. For the first time, in Korea, the 345kV XLPE cable was installed between Youngseo and Youngdeungpo substations in 2003, June. So, this paper introduces the project profile, the design of cable and its accessory, the cable system design, installation and site test.

  • PDF

A Comparison Study on Mechanical Properties of XLPE Insulation Thermally Degraded at Equivalent and Variable Temperature Conditions (XLPE 절연체의 등가 및 가변온도 가속열화실험을 통한 기계적 특성 비교 분석)

  • Taejoon, Kim;Jae-Sang, Hwang;Sung Hoon, Jung;Tae Young, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.73-77
    • /
    • 2022
  • Recently, as the number of years of operation has increased for more than 30 years, interest in evaluating the remaining life of major power facilities such as transformers and ultra-high voltage cables is increasing. In particular, the risk of failure is increasing because the underground transmission XLPE cable has been built since 1980 and has been operating in excess of 30 years of design life or close proximity. Therefore, it is necessary to develop an algorithm to evaluate the residual life of the XLPE cable considering the load to determine the risk of failure. Since load data is large amount of data, it is necessary to make the variable load information equivalent to the time unit first in order to calculate the remaining life of the system quickly. In overseas literature, transformers are reported to be standardized for variable load equivalent conversion formulas, but they have not been reported for ultra-high voltage cables. Therefore, in this paper, whether the equivalent conversion formula of a transformer can be applied to XLPE cables was reviewed through accelerated degradation tests under equivalent and variable temperature conditions, and considerations were studied when evaluating the remaining operating life of XLPE cables based on the experimental results.

Lightning protection in an 154kV GIS connected by oil-filled cables (O.F. Cable에 연결된 154kV GIS의 뇌보호)

  • 정태호
    • 전기의세계
    • /
    • v.29 no.5
    • /
    • pp.315-320
    • /
    • 1980
  • It has been appeared and widely used today SF6 Gas Insulated Substation(Hereafter called GIS) for the power supply to the densely populated area due to the superior insulation withstand ability of SF6 Gas. And to maximize the compact effect of this substation, it is normal practice to connect underground cables. If it is possible to elieminate the redundant lightning arresters using the physical characterestics of travelling waves in underground cables, economical advantages can be obtained together with easy maintenances. It is presented in this paper the possiblity of eliminating the transformer protection lightning arresters under some conditions for the 154kV GIS's (BIL:750kV) which Korea Electric Co. plans to construct using the general purpose digital computer program.

  • PDF

New leakage detection system for the hydraulic system of EHV underground oil-filled cables (초고압 OF 케이블 급유계통의 조기이상검지시스템)

  • Kim, Y.;Seong, J.K.;Han, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1966-1968
    • /
    • 2000
  • Globally, oil-filled paper-insulated cables and cross-linked polyethylene-insulated cables have been mainly applied for a underground power transmission line. The oil-filled cable has the hydraulic system in which insulating oil, expanded and contracted by temperature changes, is absorbed and supplied. This system enable us to detect oil leakages from the cable. But it has some problems such as difficulty in detecting minor leakages and a relatively long period of fault detecting. And so, this paper introduce a new leakage detection system, improved from the current one.

  • PDF

Evaluation of Jacket Compounds for Underground Distribution Power Cables (지중 배전케이블용 자켓 컴파운드의 특성평가)

  • 한재홍;송일근;김동명;이재봉;정창수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.687-694
    • /
    • 2002
  • In order to replace the jacket material for URD power cables, the 6 kinds of polyethylene compounds were manufactured and evaluated. The characteristics of the compounds were investigated by water vapor transmission (WVT) test, thermal and mechanical test. In WVT test, all the polyethylene compounds showed the superior water resistance to conventional PVC. The molecular structure and density of polyethylene play an important role in WVT. Also, the polyethylene compounds showed the suitable characteristics in thermal and mechanical test. Especially, the linear polyethylene compounds showed the superior characteristics to LDPE ones. Due to the fillers in compounds, the abrasion resistance was decreased and the cut-through resistance was increased. From this study, it can be considered that the polyethylene compounds may be suitable to jacket material for URD power cables.

Field Application of Power Cable Diagnosis System (전력케이블 열화진단기법의 현장적용)

  • Kim, Ju-Yong;Han, Jae-Hong;Song, Il-Keun;Kim, Sang-Jun;Lee, Jae-Bong;Oh, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.148-151
    • /
    • 2002
  • In order to prevent the failures of underground distribution power cables we need to measure insulation condition in the field. Until now we used DC high voltage as a power source for the cable diagnosis but it was not proper method to the XLPE insulation cables because DC high voltage can affect sound insulation and can't diagnose exactly insulation degradation. For these reasons we imported isothermal relaxation current measurement system called by KDA-1 from germany but it's reliability did not proved in our URD cables. DC voltage decay measurement system was developed by domestic company but they don't have field experience. In this paper we tried to prove reliability of these two systems in the field. Through the field diagnosis and Ac breakdown test the two systems showed similar results.

  • PDF

Fault Location Using Neuro-Fuzzy for the Line-to-Ground Fault in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전선로에서의 1선지락 고장시 고장점 추정)

  • 김경호;이종범;정영호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.602-609
    • /
    • 2003
  • This paper describes the fault location calculation using neuro-fuzzy systems in combined transmission lines with underground power cables. Neuro-fuzzy systems used in this paper are composed of two parts for fault section and fault location. First, neuro-fuzzy system discriminates the fault section between overhead and underground with normalized detail coefficient obtained by wavelet transform. Normalized detail coefficients of voltage and current in half cycle information are used for the inputs of neuro-fuzzy system. As the result of neuro-fuzzy system for fault section, impedance of selected fault section is calculated and it is used as the inputs of the neuro-fuzzy systems for fault location. Neuro-fuzzy systems for fault location also consist of two parts. One calculates the fault location of overhead, and the other does for underground. Fault section is completely classified and neuro-fuzzy system for fault location calculates the distance from the relaying point. Neuro-fuzzy systems proposed in this paper shows the excellent results of fault section and fault location.

Development of Waterproof Jacket Materials for Power Cables

  • Han, Yong-Huei;Jung, Jong-Wook;Kwon, Tae-Ho;Song, Hyun-Seok;Koo, Kyo-Sun;Han, Byung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.146-154
    • /
    • 2003
  • This paper describes various characteristics of the new compounds for cable jackets and model cables advanced in waterproof performance in order to essentially solve the problems of underground (URD) distribution class power cable failures. Several compounds were manufactured by the inclusion of additives to base resins available in Korea and tested for basic property, mechanical and electrical characteristics. Two model cables were created by using the compounds determined in the test as being the most appropriate for new structured model cable jacket material. The waterproof performance and mechanical strength of the new cable jackets were verified by applicable tests. As a result, MDPE and LLDPE compounds were superior as cable jackets in both mechanical and electrical characteristic aspects when compared with conventional PVC. In addition, the model cables composed of the new compounds based on MDPE showed good quality results in the water permeability test.

A Study on the Design and Fabrication for Partial Discharge Measurment in 22.9kV Underground Power Cable using Planar Loop Sensor (22.9kV급 지중전력케이블의 부분방전 측정을 위한 평면루프센서 설계 및 제작 연구)

  • Shin, Dong-Hoon;Lim, Kwang-Jin;Lwin, Kyawsoe;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.210-211
    • /
    • 2007
  • The objective of this paper is to effectively detect partial discharges in underground power cables. In this field, we have been usually applied several sensors for such partial discharges. This study used a type of beyond compare antenna based on the influence of background noises. Also, we designed a new structure that is able to easily apply in the adhesion of planar loop types for underground power cables in measurement sensitiveness elevation. A high frequency simulation tool (CST-MWS) was applied to the antenna used in this study, and it was used to evaluate certain characteristics. We fabricated an antenna using the simulation data obtained from a specific test. After checking the sensitivity of this Planar Loop Sensor in the Lab, it was tested in an actual site. This paper analyzed the data as a part of time and frequency domain using an oscilloscope and spectrum analyzer, respectively.

  • PDF

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • In the precedent study it was presented that the comparison of thermal resistivity using various backfill materials including river sand regarding water content, dry unit weight and particle size distribution. Based on the precedent study, this study focused on developing the optimized backfill material that would improve the power transfer capability and minimize the thermal runaway due to an increase of power transmission capacity of underground power cables. When raw materials, such as river sand, recycled sand, crush rock and stone powder, are used for a backfill material, they has not efficient thermal resistivity around underground power cables. Thus, laboratory tests are performed by mixing Fly-ash, slag and floc with them, and then it is found that the optimized backfill material are required proper water content and maximum density. Through various experimental test, when coarse material, crush rock, is mixed with recycled sand, stone powder, slag or floc for a dense material, the thermal resistivity of it has $50^{\circ}C$-cm/Watt at optimum moisture content, and the increase of thermal resistivity does not happen in dry condition. The result of experiments approach the optimization of the backfill materials for underground power cables.