• Title/Summary/Keyword: Underground power cables

Search Result 191, Processing Time 0.039 seconds

Development and Applicatin of EMTP Based Power Cable Simulator for Underground Transmission Cables (EMTP 기반 지중송전케이블 시뮬레이터 개발 및 적용)

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won;Lee, Jong-Beom;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1374-1381
    • /
    • 2010
  • This paper discusses the characteristics of sheath circulating current as well as the development and application of new software for underground power cable systems. Generally, in steady state, high sheath circulating current causes the increase of sheath temperature and thermal resistance which leads to the steeply reduction of the power capacity. Therefore, the exact calculation of sheath circulating current is required for analysis about the influence of high sheath current on permissible current. In this paper, Power Cable Simulator is developed for calculation of the sheath current. It can analyse the sheath current by real time. It is also easier to use than conventional software, such as EMTP and CabSim, because all the data for calculating the cable parameters are stored in a database(DB) within Power Cable Simulator. In addition, the accuracy of Power Cable Simulator is also proved through the comparison among the current calculated by Power Cable Simulator, EMTP and Cabsim with measured current.

Progress in Technology of Ultrahigh-voltage XLPE Cable (대용량 XLPE 케이블 고찰)

  • Choi, Chang-Soo;Lee, Kab-Joong;Kwon, Byung-Il;Nam, Jeong-Se
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1356-1358
    • /
    • 1995
  • About 20 years have passed since cross-linked polyethylene(XLPE) came into practical use for power transmission cables. In 1969, We were the first to product 33kV XLPE insulated cables, and in 1984 produced XLPE cable for 154kV. To meet the increasing demand for electric power in large cities, and to improve reliability of the power supply, plans are being made to introduce ultrahigh-tension power cable for long distance underground lines in urban areas. Studies are currently under way to develop more than 154kV XLPE cables to meet increasing demand. In this paper presents the progress in the production and design of XLPE cables, and describes ways in which further improvements seems likely.

  • PDF

An Improvement of Optical Fiber Composite Power Cable On-Line Monitoring System for Underground Distribution Network (지중 배전계통 적용을 위한 광복합 케이블 실시간 감시시스템 개선)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Park, Jung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.77-83
    • /
    • 2012
  • Since power system is switching to smart grid, on-line monitoring technology has become necessary for underground distribution power cable. Therefore, the application of DTS(Distributed Temperature Sensing) technology using OFCPC(Optical Fiber Composite Power Cable) capable of monitoring underground distribution power cables has been developed. These can bring about reductions in faults and increases in operating capacity of underground distribution system. To date, the test-bed of optical fiber composite power cable on-line monitoring system has been constructed. Then, matters to be improved have been drawn through verification experiments. This paper presents the improvement and experiment results of the optical fiber composite power cable on-line monitoring system to apply to underground distribution lines in the field.

A Study on The Effects of AC Corrosion on Underground Gas Pipeline Running Parallel with High Power Cables (Case II) (편력케이블과 가스배관의 병행구간에 대한 교류부식 영향 검토 연구(II))

  • Bae, Jeong-Hyo;Ha, Tae-Hyeon;Lee, Hyeon-Gu;Kim, Dae-Gyeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.74-79
    • /
    • 2002
  • We have been analyzed the interference problems already in steady state, especially AC corrosion when the gas pipeline is burred with power cable in the same submarine tunnel. In the next stage, we analyze the induced voltage in a fault condition of 154[kV] underground T/L. This paper presents the results of them which are limitation of safety voltage. meodeling of power cables, gas pipeline and grounding systems, analysis of induced voltage in a fault condition, and protection of Power line system.

A Study on the Surge Analysis considering Surge Arrester and Grounding System in the Combined Distribution System (혼합 배전계통에서 피뢰기적용과 접지시스템 변경을 고려한 서지 해석에 관한 연구)

  • Yun, Chang-Sub;Lee, Jong-Beom;Kim, Beong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.204-205
    • /
    • 2006
  • This paper describes the protective ability of lightning arrestor in combined distribution system with power cable. To evaluate the protective ability, change of arrestor and grounding location are considered. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability as in underground system, when arrestor occurs failure has overhead line. The result shows that lightning arrestor in combined distribution system with power cable protect effectively when failure at arrestor in overhead line. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability in underground distribution system, when arrestor of overhead line has failure. The result shows that lightning arrestor installed in underground cable can effectively protected cables from surge when arrestor of overhead line has failure. And also even though grounding locations are decreased, it is revealed that protective ability is nearly similar.

  • PDF

Analysis of Electromagnetic Field Around Distribution Line (배전선로 주변에서의 전자계 분포 해석)

  • Kwon, Myung-Rak
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.672-676
    • /
    • 2017
  • Electrical energy is playing an increasingly vital role as the primary energy source in everyday life. With the increase in electric power consumption, power facilities are under an increasing stress and must operate at a high capacity. Consequently, the demand for electric power cables in power transmission and distribution lines is rapidly increasing. Underground distribution lines have been steadily replacing the aboveground lines owing to the increase in electric power demand and the need to increase the supply voltage. In addition to line damage, worker safety is of primary concern in this type of underground infrastructure. In this study, to improve the safety of workers dealing with underground transmission lines, we analyzed the electromagnetic field generated around the distribution line and determined the basic criteria for developing a device that can detect a live underground line.

Strain Characteristics of Underground Flexible Pipes Subject to Cyclic Vehicle Load (차량 반복하중에 의한 지중연성관의 거동특성)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Kim, Dae-Hong;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.730-737
    • /
    • 2004
  • In this paper, in order to examine cyclic hehavior characteristics and safety of underground flexible pipes for electric cables subject to cyclic vehicle load, FEM analysis and cyclic soil box test were carried out. As results of the test, it was revealed that the vertical displacement of the test was larger than that of FEM analysis because thermal effect arising from power cables made reduction of rigidity of the pipe so that large deformation of the pipe induced by the heat occured. Moreover, it was shown that the final vertical displacement under about 0.4 million times of the cyclic load test was not satisfied with elastic allowable displacement of the pipe, and long term stability of the pipe was not stable since behavior characteristics of the pipe exists plastic strain range pasted clastic strain range.

  • PDF

Defects Detection of the Underground Distribution Power Cables by Very Low Frequency Voltage Source (초저주파전원을 이용한 지중배전 전력케이블의 결함검출)

  • 김주용;송일근
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.45-50
    • /
    • 1998
  • This paper presents experimental results on the application of very low frequency(VLF) voltage to replace conventional DC test as an after laying test for underground distribution cables. We carried out several tests to prove defects detecting ability of VLF test on the 5m length real cables having knife-cut or needle type defects which is made in our La.. Through this experiment we proved it is very difficult to initiate electrical tree from the defects inside of the cable insulation but once the electrical tree is initiated it grows very fast and VLF does not make new defects and expand the defect. Therefore VLF test equipment for quality inspection test of manufacture is more effective than field application for underground distribution cables.

  • PDF

Identification of Energized status of Underground Power Cable (지중 전력 케이블 가압 상태 진단)

  • 김창교;홍진수;정영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.69-72
    • /
    • 1998
  • A study to identify the energized status of the 22.9kV underground power cable by the detection of vibration was reformed. We derived that there exists vibration at double the line frequency in live cables by electromagnetic force. The vibration can be picked up by accelerometer sensor. A prototype was tested on the underground distribution system in Chonan Station, KEPCO. The results are presented and suggest the applicability of the detecting device.

  • PDF

Evaluation of Construction Applicability for Slurry Backfill Materials of Underground Power Cable (지중송전관로 유동화 뒷채움재의 시공성 평가)

  • Kim, Dae-Hong;Cho, Hwa-Kyung;Oh, Gi-Dae;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1068-1075
    • /
    • 2006
  • Flow-able backfill is known as soil-cement slurry, void fill, and controlled low-strength material (CLSM). The benefits of CLSM include reduced equipment costs, faster construction, re-excavation in the future, and the ability to place material in confined spaces such as narrow parts nearly impossible for compaction or perimeter of underground power cables. A review of some recent full-scale tests carried out by KEPRI on slurry backfill materials for application in underground power cable was presented. Based on this research, applicability was assessed and compare to results of laboratory tests for improved slurry materials with optimal mixture contents.

  • PDF