• Title/Summary/Keyword: Underground excavation

Search Result 838, Processing Time 0.028 seconds

Analysis on Behavior Characteristics of Underground Facility Backfilled with Clsm According to Adjacent Excavation (CLSM으로 되메움된 지하 인프라 매설물의 근접 굴착에 따른 거동특성 분석 )

  • Seung-Kyong, You;Nam-Jae, Yu;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.101-109
    • /
    • 2022
  • This study describes the results of model experiment to analyze the effect of backfill material types on the behavior of underground facility. In the model experiment, backfill materials around the existing underground facility were applied with soil (Jumunjin standard sand) and CLSM. The displacement of underground facility was analyzed for each excavation stage considering the separation distance between the excavation surface and the backfill area based on the experimental results. When soil was applied as a backfill material, the soil on the back of the excavation surface collapsed by excavation and formed an angle of repose, and the process of slope stability was repeated at each excavation stage. In addition, the displacement of underground facility began to occur in the excavation stage that the failure line of soil passes the installation location of the underground facility. When CLSM was applied as a backfill material, there was almost no horizontal and vertical displacement of the ground regardless of the separation distance from the excavation surface even when excavation proceeded to the backfill depth. Therefore, this result showed that it can have a resistance effect against the lateral earth pressure generated and the collapse of the original ground by adjacent excavation, if a backfill material with high stiffness such as CLSM is applied.

A Case Study on the Feed-Back Analysis and the Reinforcement Plan using the Measurement Data of Excavation Site close to the Existing Underground Box (기존 지하 Box 근접 굴착공사 현장의 계측결과를 이용한 역해석 및 보강방안의 적용 사례)

  • Lee, Jung-Hee;Noh, Won-Seok;Jeong, Soon-Ig;Kim, Wan-Jong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.445-456
    • /
    • 2010
  • Massive underground excavation can be carried out recently due to the technical development of the excavation for retaining wall. Feed-back analysis using field measurement results is recommended to secure the stability of the construction because calculated values at stages of the design and the construction are uncertain. Reinforcement plan should be established based on the result of it. This study deals with the underground excavation site, which is under construction and is close to structure(subway) at downtown area. The result of feed-back analysis on the measurement data of displacement at multi-soil layers was reflected to make a plan for safe construction. This case study can be useful information for contingency plan on abnormal displacement which can be occurred at similar underground excavation.

  • PDF

A Study on the visco-plastic behavior of the jointed rock mass reinforced by rockbolts during excavation (굴착과정에서 록볼트로 보강된 절리암반의 점소성 거동 분석)

  • 이연구;이정인;조태진
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 1995
  • A two dimensional visco-plastic finite element model capable of handling the multistep excavaton was developed for investigating the effect of excavation-support sequences on the behaviour of underground openings in the jointed rock mass. Ubiquitous joint pattern was considered in the model and joint properties in each set were assumed to be identical. Passive, fully-grouted rockbolts were considered in the model. Visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Coulomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-support sequences. The reliability of the model to the stability analysis for the underground excavation in practice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

A preliminary study on the optimum excavation sequence of a room-and-pillar underground structure (주방식 지하구조물의 최적 굴착공정에 대한 예비 분석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of galleries. As a result, its construction and economical efficiency can be governed by excavation sequence of galleries. Therefore, this study aims to study the optimum excavation scheme of a room-and-pillar underground structure by considering its various design factors such as ground conditions and excavation sequences. Drill-and-blast method is assumed as a excavation method for a room-and-pillar underground structure. In addition, two kinds of excavation patterns corresponding to a concurrent and a sequential excavation patterns are considered in this study. For the assumed conditions, the structural stability and the construction efficiency based on the number of faces and the travel distance of a jumbo drilling machine are analyzed for the two excavation patterns. Even though the two kinds of excavation patterns show almost the same structural stability as each other, the concurrent excavation pattern is relatively preferable to the sequential excavation pattern in terms of the number of faces in operation and travel distance of a drilling jumbo.

DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS (록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발)

  • Lee, Yeon-Gyu;Lee, Jeong-In;Jo, Tae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Effect of Underground Building for the Groundwater flow in the Ground Excavation (지반굴착에 따른 지반 안정성 평가 시 지하시설물이 지하수흐름에 미치는 영향 분석)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Byung-Chan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.17-28
    • /
    • 2018
  • The purpose of this study is to investigate the effect of underground facilities around excavation zone on groundwater flow characteristics during excavation. The scenarios were constructed considering the size of the underground facility, the separation distance, and the hydraulic gradient. As a result, as the size of the underground facility increases, the difference of head and the hydraulic gradient become large. The shorter the separation distance of underground facility is, the more the difference of head and the hydraulic gradient occur. The effect of hydraulic gradient on model area was relatively small. As a result of analysis of groundwater flow rate for the scenario, groundwater flow rate tends to decrease as the size of underground facility increases or groundwater flow rate tends to decrease as the separation distance decreases. It is necessary to examine the effect of underground facilities on the groundwater flow analysis in the ground excavation.

An Adaptive and Real-Time System for the Analysis and Design of Underground Constructions

  • Gutierrez, Marte
    • Geotechnical Engineering
    • /
    • v.26 no.9
    • /
    • pp.33-47
    • /
    • 2010
  • Underground constructions continue to provide challenges to Geotechnical Engineers yet they pose the best opportunities for development and deployment of advance technologies for analysis, design and construction. The reason for this is that, by virtue of the nature of underground constructions, more data and information on ground characteristics and response become available as the construction progresses. However, due to several barriers, these data and information are rarely, if ever, utilized to modify and improve project design and construction during the construction stage. To enable the use of evolving realtime data and information, and adaptively modify and improve design and construction, the paper presents an analysis and design system, called AMADEUS, for underground projects. AMADEUS stands for Adaptive, real-time and geologic Mapping, Analysis and Design of Underground Space. AMADEUS relies on recent advances in IT (Information Technology), particularly in digital imaging, data management, visualization and computation to significantly improve analysis, design and construction of underground projects. Using IT and remote sensors, real-time data on geology and excavation response are gathered during the construction using non-intrusive techniques which do not require expensive and time-consuming monitoring. The real-time data are then used to update geological and geomechanical models of the excavation, and to determine the optimal, construction sequences and stages, and structural support. Virtual environment (VE) systems are employed to allow virtual walk-throughs inside an excavation, observe geologic conditions, perform virtual construction operations, and investigate stability of the excavation via computer simulation to steer the next stages of construction.

  • PDF

Experimental study on the tunnel behavior induced by the excavation and the structure construction above existing tunnel (기존터널 상부지반 굴착 후 구조물 설치에 따른 터널거동에 관한 실험적 연구)

  • Cha, Seok-Kyu;Lee, Sangduk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.640-655
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structures. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process in the ground under the excavation basement can affect the existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effect of the excavation of the ground and the new structure load on the existing tunnel was experimentally implemented and the influence of the adjacent construction on the existing tunnel was investigated. For this purpose a large testing model with 1/5 scale of the actual size was manufactured. The influence of ground excavation, width of the load due to new structure, and distance between centers of tunnel and of excavation on the existing tunnel was investigated. In this study, it was confirmed that the influence on the existing tunnel gets larger, as the excavation depth get deeper. At the same distance, it was confirmed that the tunnel displacement increased up to three times according to the increase of the building load width. That is, the load width influences the existing tunnel larger than the excavation depth. As the impact of the distance between centers of tunnel and of excavation, it was confirmed that tunnel crown displacement decreased by 48%. The result showed that a tunnel is located in the range of 1D (D: tunnel diameter) from the center of excavation, the effect of excavation is the largest.

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

Design of initial support required for excavation of underground cavern and shaft from numerical analysis

  • Oh, Joung;Moon, Taehyun;Canbulat, Ismet;Moon, Joon-Shik
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • Excavation of underground cavern and shaft was proposed for the construction of a ventilation facility in an urban area. A shaft connects the street-level air plenum to an underground cavern, which extends down approximately 46 m below the street surface. At the project site, the rock mass was relatively strong and well-defined joint sets were present. A kinematic block stability analysis was first performed to estimate the required reinforcement system. Then a 3-D discontinuum numerical analysis was conducted to evaluate the capacity of the initial support and the overall stability of the required excavation, followed by a 3-D continuum numerical analysis to complement the calculated result. This paper illustrates the application of detailed numerical analyses to the design of the required initial support system for the stability of underground hard rock mining at a relatively shallow depth.