• Title/Summary/Keyword: Underground distribution cable

Search Result 104, Processing Time 0.025 seconds

A Study on the Lightning Overvoltage Analysis and Lightning Surge Protection Methods in 22.9kV Underground Distribution Systems (22.9kV 지중계통의 뇌과전압 해석 및 뇌서지 보호방안에 관한 연구)

  • 김상국;정채균;이종범;박왈서
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.454-460
    • /
    • 2004
  • The effects of surge arresters for protection of transmission systems against direct lightning strokes have already been reviewed using Electromagnetic Transients Program(EMTP). Distribution lines are spanned in much larger area than transmission lines, and therefore, are more susceptible to lightning strokes. We have modelled the 22.9kV underground distribution cable systems that have arresters and grounding wires. And this paper analyzes the overvoltages on underground distribution cable systems when direct lightning strokes strike on the overhead grounding wire using EMTP. Then we investigated that (1) the effects of lightning stroke according to underground distribution cable length (2) voltages at the riser pole and at the cable terminal according to installation of arrester. This study will provide insulation coordination methods for reasonable systems design in 22.9kV underground distribution cable systems.

An Improvement of Optical Fiber Composite Power Cable On-Line Monitoring System for Underground Distribution Network (지중 배전계통 적용을 위한 광복합 케이블 실시간 감시시스템 개선)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Park, Jung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.77-83
    • /
    • 2012
  • Since power system is switching to smart grid, on-line monitoring technology has become necessary for underground distribution power cable. Therefore, the application of DTS(Distributed Temperature Sensing) technology using OFCPC(Optical Fiber Composite Power Cable) capable of monitoring underground distribution power cables has been developed. These can bring about reductions in faults and increases in operating capacity of underground distribution system. To date, the test-bed of optical fiber composite power cable on-line monitoring system has been constructed. Then, matters to be improved have been drawn through verification experiments. This paper presents the improvement and experiment results of the optical fiber composite power cable on-line monitoring system to apply to underground distribution lines in the field.

Analysis of Lightning-Induced Overvoltage and Current in Buried Underground Distribution Cable using EMTP/MODELS (EMTP/MODELS를 이용한 지중 배전선로의 뇌유도 과전압 및 전류 분석)

  • Seo, Hun-Chul;Han, Jun;Kim, Chul-Hwan;Choi, Sun-Kyu;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1077-1082
    • /
    • 2012
  • This paper analyzes the lightning-induced overvoltage and current in buried underground distribution cable. Based on analytical expressions, the lightning-induced overvoltage and current in buried underground distribution cable is calculated by EMTP/MODELS. The modeling is verified by comparing with the results in reference. Also, the type and buried arrangement of cables used in domestic distribution line are modeled by EMTP/ATPDraw. The various simulations according to the type and buried arrangement of cable are performed and the simulation results are analyzed.

A Development and Performance Assessment of On-Line Monitoring System for Optical Fiber Composite Underground Distribution Network using DTS (DTS를 활용한 광복합 지중 배전계통 실시간 감시시스템 개발 및 성능평가)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Cho, Hwi-Chang;Choi, Myeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.115-121
    • /
    • 2011
  • Intelligent distribution equipment is inevitable to realize self-healing which is one of smart grid functions in distribution network. Therefore, most of distribution equipment have been developed with self diagnostic sensors. However, it is not effective to construct on-line monitoring system for underground distribution cable because of high cost and low sensitivity. Recently, optical fiber composite cable is being considered for communication and power delivery in order to cope with increasing communication in distribution network. This paper presents the design and performance assessment results of underground cable on-line monitoring system using DTS(Distributed Temperature Sensing) and optical fiber composite underground cable.

A Study on the Surge Analysis considering Surge Arrester and Grounding System in the Combined Distribution System (혼합 배전계통에서 피뢰기적용과 접지시스템 변경을 고려한 서지 해석에 관한 연구)

  • Yun, Chang-Sub;Lee, Jong-Beom;Kim, Beong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.204-205
    • /
    • 2006
  • This paper describes the protective ability of lightning arrestor in combined distribution system with power cable. To evaluate the protective ability, change of arrestor and grounding location are considered. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability as in underground system, when arrestor occurs failure has overhead line. The result shows that lightning arrestor in combined distribution system with power cable protect effectively when failure at arrestor in overhead line. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability in underground distribution system, when arrestor of overhead line has failure. The result shows that lightning arrestor installed in underground cable can effectively protected cables from surge when arrestor of overhead line has failure. And also even though grounding locations are decreased, it is revealed that protective ability is nearly similar.

  • PDF

A Study on Lightning Surges in Underground Distribution Systems

  • Jung Chae-Kyun;Kim Sang-Kuk;Lee Jong-Beom
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.171-176
    • /
    • 2005
  • The effects of surge arresters for the protection of transmission systems against direct lightning strokes have already been reviewed by many researchers. However, their studies have not encompassed underground cable systems. Therefore, in this paper we investigate the 22.9kV combined distribution systems that have arresters and ground wires. In addition, we analyze the overvoltages on underground distribution cable sections when direct lightning strokes contact the overhead ground wire using EMTP. Finally, we discuss the effect of lightning strokes according to the change of cable length and installation of arresters. This study provides insulation coordination methods for reasonable system design in 22.9kV underground distribution cable systems.

A Review of Strategy to Capture Niche Marketing of HTS Power Distribution Cable

  • Park, Sang-Bong;Nam, Kee-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Ryoo, Hee-Suk
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.11-17
    • /
    • 2004
  • It becomes difficult and high in cost to construct new ducts and/or tunnels for power cables in domestic areas. This paper presents possible strategy of an HTS distribution cables for distributing electric power in local areas as niche marketing. Reflected were its important distinction such as system configuration, rationale, establishment of strategy and considerably high economical efficiency compared with present underground cables. In this paper, applicable important items by using HTS distribution cables in water pumping powerhouse and distribution substation as example objective regions were reviewed. Based on this, the following items on distribution HTS system are examined. (I)A review of constructing a model system to introduce high temperature superconducting distribution cables to objective areas is presented. (2)The strategy to capture HTS distribution cable in water pumping powerhouse and distribution substation as niche marketing regions were reviewed. (3)In concrete, system configuration, rationale, establishment of strategy and considerably high economical efficiency are reviewed between existing cable and HTS one.

Analysis on Proper Cable Arrangement and Duct Distance to Maximize Ampacity of Underground Distribution Cable (지중배전케이블의 허용전류용량 증대를 위한 적정 회선배치 및 관로 이격거리 분석)

  • Jo, Ara;Moon, Won-Sik;Lee, Seung-Jae;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.57-64
    • /
    • 2016
  • Power demand has continuously increased with technological and economical development. The load density is also growing in the center of downtown area. In particular, underground facilities have been increased on the purpose of the prevention of urban disasters and pedestrian environment improvement. Based on this situation, the underground space in urban surroundings has gradually decreased because of the limited space. The ampacity of buried cables is affected by various factors such as cable size, soil thermal resistance, burial depth and filling material. The thermal capacity of the facilities is determined by the absorb heat surrounding the cable and the soil. The maximum operating temperature of cable is the highest temperature when the insulator of cable is not damaged in the case of high enough temperature. In this paper, the most effective cabling configuration is suggested using the duct array adjustment. It was also considered to increase the number of cable line. This underground distribution system was simulated by using ETAP(Electrical Transient Analysis Program).

Analysis of Transient Phenomena Considering Arrester in Underground Distribution Line (지중배전선로용 피뢰기를 고려한 과도현상 해석)

  • Yun, Chang-Sub;Lee, Jong-Beom;Lee, Jae-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.276-278
    • /
    • 2007
  • This paper describes the analysis to install an arrester for an underground distribution line effectively. Currently, the underground distribution cable is protected by the arrester connected with overhead distribution line. However, riser pole arrester can't protect all parts of cable like the end of the underground distribution cable. To solve this problem, we installed the arrester on each cable and have measured the overvoltage made by lightning surge in each situation. The location to get effective results has been decided from the measured voltage above.

  • PDF

A Lightning Surge Analysis of Testing Line for Protection of Underground Distribution Systems (지중배전계통 보호를 위한 모의시험선로 서지특성 해석)

  • Kim Byoung-Sung;Lee Jang-Geun;Lee Jong-Beom;Han Byong-Sook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.313-321
    • /
    • 2006
  • This paper describes the overvoltage obtained by surge behavior analysis in testing underground distribution systems. Model systems consist of overhead distribution line and underground cable. Such model system considered various characteristics of actual distribution systems will be soon constructed at testing yard. Simulation is carried out under various states such as cable kinds, cable length, lightning wave and time, and branch circuits. Model is established by EMTP/ATPDraw. Line Constants are calculated by ATP_LCC. When the direct lightning surge strikes on conductor of overhead line, the overvoltage is calculated using EMTP/ATPDraw in many cases. Simulation results will be compared with real testing results at testing yard in the near future. The compared results will be used to establish protection methods in actual underground distribution systems.