• Title/Summary/Keyword: Underground conduit

Search Result 22, Processing Time 0.031 seconds

A Study on the Deformation Behavior of the Underground Pipe under the External Load (외부하중에 의한 지중 매설관의 변형거동 특성에 관한 연구)

  • Yoo, Hankyu;Park, Eonsang;Kim, Dongryul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.71-79
    • /
    • 2008
  • The underground conduit laid under different environments exhibits various behaviour according to the ground and external load as well as the loading time and conditions, so on. As the environmental conditions are usually different even within the same area, it is very difficult to correctly predict the stress conditions and behaviour of the underground conduit using currently available theoretical analysis. Especially, it is not yet satisfied in Korea for the evaluation of the underground conduit under the influence of the load of vehicles or unexpected loading conditions. Thus, in this study the assessment for the excavation depth and ground disturbance was carried out with a large box model test and numerical analysis. Numerical analysis was also performed for the assessment of dynamic loading conditions like railway load.

  • PDF

Development of numerical model for estimating thermal environment of underground power conduit considering characteristics of backfill materials (되메움재 특성을 고려한 전력구 열환경 변화 예측 수치해석모델 개발)

  • Kim, Gyeonghun;Park, Sangwoo;Kim, Min-Ju;Lee, Dae-Soo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The thermal analysis of an underground power conduit for electrical cables is essential to determine their current capacity with an increasing number of demands for high-voltage underground cables. The temperature rises around a buried cable, caused by excessive heat dissipation, may increase considerably the thermal resistance of the cables, leading to the danger of "thermal runaway" or damaging to insulators. It is a key design factor to develop the mechanism on thermal behavior of backfilling materials for underground power conduits. With a full-scale field test, a numerical model was developed to estimate the temperature change as well as the thermal resistance existing between an underground power conduit and backfill materials. In comparison with the field test, the numerical model for analyzing thermal behavior depending on density, moisture content and soil constituents is verified by the one-year-long field measurement.

The Underground Utility-Pipe Conduit Monitoring Method using a CCTV Camera (CCTV 카메라를 이용한 지하공동구 모니터링 방법)

  • Kang, Jin-A;Nam, Sang-Kwan;Oh, Yoon-Seuk;Choi, Hyun-Sang
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.73-75
    • /
    • 2010
  • The more High-Tech City developed, the more Utility-Pipe Conduit becomes necessary. However, the existing management methods is difficult to cope with the accident. Therefore this study suggests on the effective way using the CCTV Camera.

  • PDF

Development of a Facility Management System for Underground Conduits Using Web Technologies (웹 기술을 이용한 지하 공동구의 시설물 관리 시스템 개발)

  • Ku, Kyong-I;Kim, Ji-Yoon;Ahn, Hyo-Jin;Kim, Joo-Sung;Kang, Jae-Mo;Kim, Youug-Jin;Kim, Yoo-Sung
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.2 s.14
    • /
    • pp.29-38
    • /
    • 2005
  • Even though underground conduits have became important city-infra structures which should be exhaustively and efficiently managed, there is few systems which supports the well-defined facility management standards. Due to the lack of the supporting systems, experts must visit underground conduits scattered several cities over the country to see and check the status of the underground conduits including built-in facilities. This type of management gives us a little bit delayed status information at the end of so much time and money costs. In this paper, to solve this problem and manage the conduit synthetically, we developed a web-based facility management system for underground conduits by using information technologies. The developed management system has a simplified map drawing interface to depict the overall architectures and locations of underground conduits and their built-in facilities into sketch maps. And, the system uses the 3D panorama image technology with zooming functions in addition to still images and video images to give the feeling of a spot inspection. Moreover, since the system accumulates the data of repair/reinforcement, occasional inspections and safety diagnosis, conduit managers can synthetically and effectively manage the facilities within underground conduits and themselves.

  • PDF

Insulation Coordination of Forced Drainage in Electric Railway (직류방식 전기철도에서 강제배류기의 절연협조)

  • Min, B.H.;Eo, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.446-448
    • /
    • 1999
  • The forced drainage set up to decrease the cathodic protection in each kind of steel conduit laid under the ground is so proscribed to be maintained less than 60V in its output voltage that insulation coordination is easy to be left out of account, on the basis of 60V of working voltage. When railway or subway break down during the service of a subway, 1,500 voltage approximating to line voltage flows through the load terminal of the drainage (rail and underground conduit) though momentary in the worst case. And so, an accident followed by dielectric breakdown, fire and damage by a fire is expected. Therefore, I suggest that insulation coordination should be considered against such a thing on designing, producing and setting up forced drainage.

  • PDF

A Study on the Point to Be Considered When Installing Underground Distribution Cable into Conduit (관로 내 케이블 포설시 고려사항에 관한 연구)

  • Jung, Jong-Yon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.479-480
    • /
    • 2011
  • 관로내 케이블 포설시 케이블 허용장력이 포설장력을 초과하지 않도록 주의해야 한다. 또한, 케이블 포설 도중 Kink가 발생하지 않도록 케이블 드럼을 반드시 세워서 포설해야 하고, 케이블 드럼을 눕혀서 포설해서는 안 된다. 또한, 허용전류를 고려하여 케이블 상호간의 간격을 일정하게 유지해야 한다. 관로 내 케이블을 설치할 경우 직선구간 뿐 아니라 굴곡구간에도 설치되므로 포설측압이 허용측압을 초과하지 않도록 시설해야 한다. 측압에 견디기 위해서는 케이블 포설시 곡률 반경을 케이블 외경의 10배 이상으로 유지하는 것이 중요하다.

  • PDF

태백시 황지용해공동의 수리지구화학적 연구

  • Kim Yong-Cheol;Kim Yu-Hong;Go Dong-Chan;Lee Jin-Yong;Yeom Byeong-U
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.97-99
    • /
    • 2006
  • Occurrence of Hwangji pond in Taebaek karst area was investigated in various hydrogeochemical ways and it is found out that there are underground cavern network and sinkholes under the pavement of Taebaek city. It is partially proved by dye tracing method.

  • PDF

A Study on the Seismic Rehabilitation Method through Using Environmentally-friendly Ductile Mortar and Fiber Materials (친환경 연성모르타르와 섬유로드를 이용한 내진보강 방안에 관한 연구)

  • Baek, Jong-Myeong;Shin, Min-Ho;Kim, Han-Bae;Kim, Bag-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3237-3250
    • /
    • 2011
  • As the growing concern about environment and earthquake for the concrete structure, many seismic rehabilitation and retrofitting methods have recently been studied but they are not coping enough with the changes of structure, specificly various problems have been found in seismic rehabilitation method - both in exposure or non exposure - when they are implemented to the underground structure, utility conduit, water supply facilities, underground wall, parking lot, road pavement, and elevated structure etc. This study is about the seismic rehabilitation method using environmentally friendly functional inorganic mortar and resilient material, and it is effectively retrofitted seismic performance as it reinforces not only physical strength, but also flexural and bond strength from the resilient material, and it has been analyzed and evaluated when the environmentally friendly functional inorganic mortar and the resilient material are applied so as to countermeasure the effect of earthquake and viable problems and approved for possibility of various applications and wide use.

  • PDF

Comparison Analysis of Ready to Use Time Depending on The Type of Public Fire Hydrant of Fire-fighting Water Facility (소방용수시설의 공설소화전 종류에 따른 사용 준비시간 비교분석)

  • Jeon, Jai-In;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • The purpose of this study is to investigate the preparation time of fire-fighting water for public fire hydrants and ground, underground fire hydrants. The equipment preparation time for stage 1 was 20.50 seconds for ground type and 24.67 seconds for underground type. The reason for this difference in preparation time is that an underground fire hydrant requires additional standpipes to connect to the main conduit of Paru and the underground hydrant, which open the manhole cover. Water tank Maintenance joint with water hose male coupling of the second stage was similar to that of the ground type of 48.50 seconds and underground water tipe of 49.00 seconds. This is because the operation of connecting the fire hose to the maintenance tank of the water tank car is the same. In the third stage, the water pipe connection was 43 seconds for ground type and 174.33 seconds for underground type. The reason why the time for connecting the water pipe to the fire hydrant is large difference is that the underground fire hydrant is opened by opening the manhole cover, After connecting the stand pipe to the fire hydrant, the additional process of connecting the water pipe to the stand pipe is required, which is considered to have greatly increased the time required. The opening of Water Control Valve and spindle Valve in the fourth stage was 66.50 seconds for the ground type and 78.83 seconds for the underground type. This difference is due to the fact that the spindle of the ground fire hydrant is located on the main body and can be easily opened, but the underground type is located next to the main body under the manhole and requires additional time to connect the opening equipment.

Development of performance assessment criterion for structures of shield TBM tunnel (쉴드 TBM 터널의 구조물 성능 평가 기준 개발)

  • Seong, Joo-Hyun;Lee, Yu-Seok;Hong, Eun-Soo;Byun, Yo-Seph
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.553-561
    • /
    • 2015
  • In this study, the performance assessment criterion for reasonable maintenance of shield TBM tunnel was presented. The performance assessment items such as crack, leakage, breakage, spalling, exfoliation/detachment, efflorescence, quality condition, exposure of steel, carbonation, faulting step, bolts condition, drainage condition, ground condition, contact section condition and conduit condition were selected by analyzing domestic and foreign performance assessment criterions and investigating segment lining deterioration cases through the site investigation and in-depth inspection analysis result on the shield TBM tunnel. In addition, the reasonable weight using AHP (Analytic Hierarchy Process) were estimated.