• Title/Summary/Keyword: Underground Works

Search Result 199, Processing Time 0.025 seconds

Applying Spitz Trace Interpolation Algorithm for Seismic Data (탄성파 자료를 이용한 Spitz 보간 알고리즘의 적용)

  • Yang Jung Ah;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 2003
  • In land and marine seismic survey, we generally set receivers with equal interval suppose that sampling interval Is too narrow. But the cost of seismic data acquisition and that of data processing are much higher, therefore we should design proper receiver interval. Spatial aliasing can be occurred on seismic data when sampling interval is too coarse. If we Process spatial aliasing data, we can not obtain a good imaging result. Trace interpolation is used to improve the quality of multichannel seismic data processing. In this study, we applied the Spitz algorithm which is widely used in seismic data processing. This algorithm works well regardless of dip information of the complex underground structure. Using prediction filter and original traces with linear event we interpolated in f-x domain. We confirm our algorithm by examining for some synthetic data and marine data. After interpolation, we could find that receiver intervals get more narrow and the number of receiver is increased. We also could see that continuity of traces is more linear than before Applying this interpolation algorithm on seismic data with spatial aliasing, we may obtain a better migration imaging.

An Experimental Study on Ground Reinforcement Effect of Concrete and Expansion Mat for Prevention of Buried Pipe Damage (지중매설관 손상 방지를 위한 콘크리트매트와 팽창매트의 지반보강효과에 관한 실험적 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Yuu, Jungjo;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.91-101
    • /
    • 2019
  • Recently, small-scale excavation like ground cavity restoration and buried pipe replacement works are being carried out in urban area, in order to improve living convenience. This paper describes experiment results on the ground reinforcement method that can reduce the buried pipe damage, when the differential settlement occurred due to poor compaction of ground below the buried pipe. Plate load tests were conducted to evaluate a reinforcement effect of ground using concrete mat and expansion mat in the ground below the buried pipe. The results showed that the stress reduction ratio by concrete mat and expansion mat according to the surcharge load was about 46%~48% and 39%~42%, respectively. Therefore, the differential settlement of the buried pipe and the ground deformation below the buried pipes were reduced by the reinforcement effect of the concrete mat and expansion mat. This means that it is possible to prevent a buried pipe damage due to underground cavity and ground subsidence, if concrete mat and expansion mat are reinforced in the ground below the buried pipe or on the ground between the buried pipes.

Oedipa's Quest and Two Americas (에디파의 탐구와 두 개의 미국)

  • Son, Dongchul
    • English & American cultural studies
    • /
    • v.9 no.1
    • /
    • pp.273-295
    • /
    • 2009
  • As Oedipa Mass, the heroine of Thomas Pynchon's The Crying of Lot 49, is apparently associated with Oedipus, the hero in Sophocles' tragedy, this paper aims to show some of their similarities in quest theme and plot development as well as in the use of dramatic irony. Oedipus the King opens with a priest's pleas to relieve the Theban people from a plague and the king's promise to rid its cause by avenging the murder of the former king, as told by the oracle. Lot 49 begins as a Los Angeles law firm informs Oedipa that she is named as the executrix in her former lover Inverarity's will to sort out the mogul's estate. Ironically, however, Oedipus' investigation reveals himself to be the very cause of the national disaster, the murderer for whom he searched. Likewise, Oedipa starts her inquiry dedicating herself to make sense out of what Inverarity had left behind, only to find that the legacy was America. Sophocles and Pynchon both employ dramatic irony to provide a controlling principle for plot development in their works. In Oedipus the King, Sophocles creates mounting tension as well as distance between the reader's knowledge and the protagonist's ignorance, compressing the play's action into the moment that Oedipus discovers his real identity. For dramatic irony, however, Pynchon tends to work through authorial comments and utilize allegorical meanings of the characters' names, directing his novel at illuminating Oedipa's discovery of Inverarity's legacy as well as the meaning of Tristero, an underground postal service system. Unlike Oedipus the King that proceeds on a single line of action, Lot 49 develops in esoteric, multi-layered allusions and intricately-interrelated double strains involving Oedipa's roles as executrix and quester. At the end of Sophocles' tragedy, Oedipus stabs his eyes and decides to live in exile, realizing that, blinded, he begot his children through his mother; Oedipa comes to a painful realization that she allowed her former lover to create death-orienting America without her diversity and moral system in old times. As Oedipa now discovers herself through her search for Tristero, her tragic spirit lies in her determination to confront her binary choices between two Americas: transcendence or entropy, the Tristero possibility or Inverarity's America. Ultimately, Oedipa tries to find who will be the bidder for the Tristero forged stamps designated as lot 49, awaiting the auctioneer's cry and the "crying" of a new-born America.

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Impact Evaluation of Water Footprint on Stages of Drainage Works (배수공 각 작업 단계별 물발자국 영향평가)

  • Chen, Di;Kim, Joon-Soo;Batagalle, Vinuri;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.225-231
    • /
    • 2020
  • Fresh water that can be used by a person of the total amount of water on the planet is increased because it is less than 0.01 % except underground water, ice and snow, etc. water management response need. In order to protect and efficiently utilize water resources, major countries are conducting water footprint studies that can quantitatively estimate the amount of water put into the operating phase of the resource harvesting phase, mainly agriculture. Korea has also recently developed a number of policies in order to cope with water shortages, and in the construction industry, as well as the need for basic research to support it has been emphasized. This study was constructed DB up to the raw material harvesting step, the transport step, the production stage in order to estimate the water consumption of resources to be put into the work process to target the drainage of the road. Water usage estimation method was utilized the method presented in the Water Footprint Manual and the environmental score card certification guide, unit water usage each drainage main method was calculated after estimating the water footprint considering the water character factor, indirect water and the direct water, the water consumption factor of material input to each process. Brown asphalt, rebar, remicon of the drainage material as a result of the water footprint calculation accounted for 97 % of the total. Drainage method is a culvert, a side channel, a culvert wing wall, reinforced concrete open channel accounted for 92.2 % of the total. Drainage total step-by-step calculated water consumption and water footprint was found in order of raw material harvesting step, transport stage, production stage. Water footprint each drainage method or total drainage material calculated in this study can be used as a base data in the agricultural and construction sectors. In order to increase the reliability of the analysis, it is believed that further overseas databases will be needed for continuous review and research.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Geophysical Exploration of Songsalli Ancient Tombs and Analysis of King Muryeong's Tomb Structure, Gongju (공주 송산리 고분군(公州 宋山里 古墳群)에서의 물리탐사와 무령왕릉(武寧王陵)의 구조분석)

  • Oh, Hyun-dok
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.4-23
    • /
    • 2013
  • Songsalli Ancient Tombs of Gongju consists of seven tombs. King Muryeong's tomb, the seventh tomb, is a brick chamber tomb discovered during the drainage works for the fifth and the sixth tombs in 1971. The excavation at the time focused on topographic surveys of the tomb entrance and the inside of the burial chamber as well as collection of the remains. The burial mount survey confirmed the status of some stone slab remaining and lime-mixed soil layers, but the survey did not examine the exterior structure of the whole tomb as the mounds were removed even more deeply. The excavation revealed damages to the bricks and mural damages due to moisture and fungus in the sixth and the seventh tombs. Between 1996 and 1997, Gongju National University conducted a comprehensive detailed survey of Songsalli Ancient Tombs including a geophysical survey, with an aim to identify the root causes of such degradation. Based on the results, repair took place in 1999 and the fifth, sixth and seventh tombs were placed under permanent conservation to conserve the cultural assets. General public is currently denied access. The purpose of this study was to conduct a three-dimensional resistivity and GPR surveys on the ground surface of the fifth, sixth and seventh tombs of Songsalli Ancient Tombs in order to understand the underground status after repair. The study also aimed to understand the thickness of all the tomb walls and exterior structure based on GPR inside King Muryeong's tomb. The exploration on the ground surface found that the three tombs and soil adjacent to the tombs had resistivity as low as 5 to $90{\Omega}m$, which confirmed that the soil water content was still as high as that prior to the repair work. Additionally, GPR found that the wall construction of the burial chamber of King Muryeong's tomb was approximately 70cm in thickness, while the structure was of 2B with two bricks, about 35cm in length, put together longitudinally(2B brick masonry). The pathway to the burial chamber was of the 2B structure just like that of the burial chamber walls, while its thickness was 80cm with an eyebrow-type arch connected to it. Also, the ceiling exterior appears to have an arch structure, identical to the shape inside.