• Title/Summary/Keyword: Underground Space Station

Search Result 87, Processing Time 0.025 seconds

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Counter Measures of the Subway Terrorism through Case Analysis (사례분석을 통한 지하철 테러에 대한 대책)

  • Kwon, Jeong-Hoon;Kim, Tae-Hwan;Choi, Jong-Gyun
    • Korean Security Journal
    • /
    • no.18
    • /
    • pp.1-20
    • /
    • 2009
  • Nowadays most nations around the world including Korea have experienced absolute shortages of available urban space. To solve various problems of the city, each nation constantly tends to extend the underground space. However there is a serious problem in making use of the underground space. Especially new terrorism coming into existence after 9.11 terror turns into the so-called ‘soft target’ which has something to do with public transportation facilities available to most people. Good examples are like these: poisonous gas attacks in Tokyo subway in 1995, Daegu subway station fire in 2003, serial bomb blast of London subway in 2005. In spite of being a concern on incidents related to the underground space it is inevitable to utilize the underground space and the tendency is growing. But Korea lags badly behind in foreign countries in this field and so seeking measures is urgently needed. Therefore the aim of this study is to note visible damages stemmed from the domestic and foreign underground space and propose more effective and adequate measures. Safety measures of terrorism are associated to minimize damage out of terrorism and they are as follows. In the first place, preparing protective equipment for saving a life from fire attacks and poisonous gas is needed urgently. In the second place, counterpart management on the spot and systematic security training should be established in order to minimize injury. In the third place, fire escapes must be provided for a rapid evacuation of potential unspecified individuals. In the fourth place, building up a network of related institutions is required for a systematic omnidirectional counterpart. Finally the Korean government ought to take fast and appropriate actions for the injured and bereaved family of the terror incident.

  • PDF

A new decision method for construction scheme of shallow buried subway station

  • Qiu, Daohong;Yu, Yuehao;Xue, Yiguo;Su, Maoxin;Zhou, Binghua;Gong, Huimin;Bai, Chenghao;Fu, Kang
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2022
  • With the development of the economy, people's utilization of underground space are also improved, and a large number of cities have begun to build subways to relieve traffic pressure. The choice of subway station construction method is crucial. If an inappropriate construction method is selected, it will not only waste costs but also cause excessive deformation that may also threaten construction safety. In this paper, a subway station construction scheme selects model based on the AHP-fuzzy comprehensive evaluation. The rationality of the model is verified using numerical simulation and monitoring measurement data. Firstly, considering the economy and safety, a comprehensive evaluation system is established by selecting several indicators. Then, the analytic hierarchy process is used to determine the weight of the evaluation index, and the dimensionless membership in the fuzzy comprehensive evaluation method is used to evaluate the advantages and disadvantages of the construction method. Finally, the method is applied to Liaoyang east road station of Qingdao metro Line 2, and the results are verified by numerical simulation and monitoring measurement data. The results show that the model is scientific, practical and applicable.

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

A Study on the Risk Assessment of the Underground Space -The Estimation of Smoke Reservoir Screen for Smoke Control in Subway Station Platform (지하공간의 위험성평가에 관한 연구 -지하철 역사내의 연기제어를 위한 제연경계벽의 효용성 평가)

  • Roh Sam-Kew;Hur Jun-Ho
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.103-109
    • /
    • 2004
  • The risk of underground space become an important issue of life safety thought the Taeku subway line Accident. It is essential to study of smoke control screen to minimize the damage of human life because of smoke passage and passenger evacuation routes are on the same vertical and dispersion movement. The Fire modeling result shows the effect of fire control screen can save the evacuation time about 2-2.5 times compare to existing the system However, The designs of fire control screen need to be complied with smoke control ventilation system to present optimum design and the position of installation.

A Study on the Character and Walking Velocity of Crowd Going up Stairs (계단에서 올라가는 군집보행의 속도에 관한 조사 및 특성에 관한 연구)

  • Park, Jae-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The effort of transferring some parts of urban functions to the underground space is growing trend among modem cities because of the limit of horizontal land use, the rise of land value, the diversification of human desire, etc. Thus, the basement of building and the subway station have deepened. It calls our attention to safety about evacuation from the underground space to the ground. Until now, the study about crowding walk in stairs has been progressed, focusing on the crowding walk that is going down the stairs, and there is no study about crowding walk that is going up the stairs. This study measured walking pace by crowd density that is going up the stairs in the subway station stairs making one-way movement of crowd. The actual survey showed that the mathematical relation 'V=0.638-0.0949p' determines going up walking velocity at a gradient of $23^{\circ}$, and the mathematical relation will be 'V=0.597-0.1067p' at a gradient of $30^{\circ}$, when it is converted, based on the average walking velocity of crowd by the slope of the stairs which is recommended by Architectural Institute of Japan.

Case Studies on Applications of Convergence Measurement Systems at the Stages of Tunnel Construction and Maintenance (터널 시공 및 유지관리 단계 내공변위 계측시스템 적용사례 연구)

  • Lee, Dae-Hyuck;Han, Il-Yeong;Kim, Ki-Sun;Jin, Suk-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.59-69
    • /
    • 2000
  • Three-dimensional total station system which integrated the instrument with Target Pin and TEMS 3D software developed by SKEC R&D center was applied to a tunnel excavation for monitoring of convergence and crown settlement. The efficiency of the system was proved as the result in the aspects of exact monitoring and prediction of rock conditions ahead of the face. To monitor the behavior of tunnel lining at the maintenance stage, DOCS system was applied to the subway tunnel section. Such many effects as the vibration of sensors, verification of the system efficiency, the effect of test trains operation, the variation of temperature and the effect of high voltage was checked. Thus the management scheme for tunnel maintenance was laid out as a proposal.

  • PDF

Investigation of ground behaviour between plane-strain grouped pile and 2-arch tunnel station excavation (2-arch 터널 정거장 굴착 시 평면변형률 조건에서 군말뚝의 이격거리에 따른 지반거동 분석)

  • Kong, Suk-Min;Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Hyun-Gu;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.535-544
    • /
    • 2016
  • Special tunnel design and construction methods have been suggested due to developments of subway and tunnel. Collapse accidents of tunnel bring enormous damage. So, observation and analysis for the safety of tunnelling and behaviour of surrounding ground are important. But, it is not economical to implement the field test in every time. Therefore, this study has measured ground behaviour due to excavation of 2-arch tunnel station according to offset between grouped pile and tunnel by laboratory model test. For the model test, trapdoor device was adopted. Tunnelling is simulated by volume loss of 2-arch tunnel. Ground displacements are observed by close range photogrammetric method and image processing. In addition, these data are compared with numerical analysis.

A Case study on the construction of a long tunnel in the youngdong railroad (Mt. Dongbaek-Dokye) (영동선 동백산-도계간 장대터널 시공사례 연구)

  • Kim, Yong-Il;Yoon, Young-Hoon;Cho, Sang-Kook;Yang, Jong-Hwa;Lee, Nai-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.155-165
    • /
    • 2002
  • This paper presents a case study on the construction of a long tunnel named as "Solan tunnel", which connects between Mt. Dongbaek station and Dokye station in the Youngdong Railroad. The tunnel will be the longest tunnel with length of 16.4 km in Korea when completed. The tunnel site is located in a complex geological region with faults, cavities and coal measures. In construction of adit No. 2, geophysical investigation methods such as electrical resistivity method and GPR(Ground Penetration Radar) were used to detect faults, cavities and coal measures in advance with some success. The geophysical investigation results and in-situ boring data were used as feedback to improve tunnel reinforcement design. Also, the tube umbrellas of grouted steel pipes were found to have a good reinforcement and grouting effects in zones of faults, cavities. In zones of coal measures, swellex rockbolts with mortar grouting were verified as successful.

  • PDF

A NUMERICAL ANALYSIS OF TRAIN-WIND IN THE SUBWAY TUNNEL FOR THE IMPROVEMENT OF THE OF UNDERGROUND SPACE AIR QUALITY (지하공간의 공기 질 개선을 위한 지하철 터널 내 열차풍의 수치 해석적 연구)

  • Lee, J.H.;Juraeva, M.;Jeong, S.H.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.523-528
    • /
    • 2011
  • Subway becomes more and more main transportation in major cities. Air pollution in the subway platforms is decreased; however, dust flow inside subway tunnel and train is increased by installing Platform Screen Door. Airflow inside subway tunnel is observed using computational method in this study The airflow characteristics around ventilation shafts and inside the tunnel is studied following the train movement, while the train moves from existing Miasamgeori station to Gireum station ANSYS CFX V12.0.l and ICEM CFD V12.0.l are used to compute the airflow inside the subway tunnel.

  • PDF