• Title/Summary/Keyword: Underground Pipe

Search Result 362, Processing Time 0.029 seconds

Study on Shearing Properties and Behavior of the Grout-reinforced Underground with ERP Pipes (FRP 그라우팅 보강지반의 전단특성에 관한 연구)

  • 최용기;박종호;권오엽;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.73-81
    • /
    • 2002
  • Nowadays , the grouted-reinforcing method, which is called FRP(Fiberglass-reinforced-plastic) pipe .reinforcing method, has been introduced in the community of pound reinforcements. The resistance to corrosion and chemical attack high strength to weight ratio, and ease of handling make these pipes a better alternative to steels in tunnel. However, to fully utilize FRP pipes as grouted reinforcing members at the face and the crown in tunnel, their mechanical properties and behaviors and the grout-reinforced underground have to be verified. Laboratory shear tests were conducted to evaluate the mechanical properties for FRP pipes, the grout-reinforced members and the grout-reinforced body of FRP pipes. According to the test results, it was observed that FRP pipes play a dominant role in shearing behavior of the grout-reinforced members and that their shearing resistance exerts after the shearing displacement increases to some extent.

Research on MFL PIG Design for caustic and defect the Inspection of Underground Gas Pipeline (지하매설 가스관의 부식 및 결함 탐지를 위한 비파괴 누설 탐상시스템 개발에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.11-20
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects on underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

  • PDF

Derivation of External Exposure Characteristics of Industrial Radiography Based on Empirical Evidence

  • Cho, Junik;Kim, Euidam;Kwon, Tae-Eun;Chung, Yoonsun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.93-98
    • /
    • 2022
  • Background: This study aims to derive the characteristics of each work type for industrial radiography based on empirical evidence through expert advice and a survey of radiation workers of various types of industrial radiography. Materials and Methods: According to a Korean report, work types of industrial radiography are classified into indoor tests, underground pipe tests, tests in a shielded room (radiographic testing [RT] room test), outdoor field tests, and outdoor large structure tests. For each work type, exposure geometry and radiation sources were mainly identified through the expert advice and workers' survey as reliable empirical evidence. Results and Discussion: The expert advice and survey results were consistent as the proportion of the work types were high in the order of RT room test, outdoor large structure test, underground pipe test, outdoor field test, and indoor test. The outdoor large structure test is the highest exposure risk work type in the industrial radiography. In most types of industrial radiography, radiation workers generally used 192Ir as the main source. In the results of the survey, the portion of sources was high in the order of 192Ir, X-ray generator, 60Co, and 75Se. As the exposure geometry, the antero-posterior geometry is dominant, and the rotational and isotropic geometry should be also considered with the work type. Conclusion: In this study, through expert advice and a survey, the external exposure characteristics for each work type of industrial radiography workers were derived. This information will be used in the reconstruction of organ dose for health effects assessment of Korean radiation workers.

A Safety Evaluation on the Ring Deflection of Buried GRP Pipes (지중매설 유리섬유복합관의 관변형에 관한 안전성 평가)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • Recently, the use of buried glass fiber reinforced plastic (GRP) pipes is widespread and ever increasing trend in the industry. GRP pipes are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. The structural behavior of a GRP pipes buried under the ground is different from that of a rigid one made of concrete or clay, for example. A GRP pipe buried under the ground is deflected circumferentially by several percent and the stresses in the pipe are mainly compressive stresses. A GRP pipes has been introduced by a number of manufacturers for selection and used by underground pipeline designers. In all cases, the modified Spangler's equation is recommended by these manufacturers for predicting the ring deflection of these pipes under dead and live loads. In this paper, the ring deflection of buried GRP pipe is evaluated and discussed based on the result of analytical investigation.

Application of Fiber Optic Sensors for Monitoring Deflection and Deformation of a Pipeline (배관 변형 및 처짐 감시를 위한 광섬유 센서의 활용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.460-465
    • /
    • 2016
  • Long pipe structures are usually installed in fixtures located with regular intervals or laid underground. Therefore, deflection and deformation could easily occur due to their weight or ground activity. A shape monitoring technique can be used effectively to evaluate the integrity of the pipe structures. Fiber Bragg grating (FBG) sensors, which have an advantage of multiplexing could be used to measure strains at multiple-points of a long structure. In this study, to evaluate the integrity of a pipeline, a shape estimation technique based on strain information was proposed. Furthermore, different experiments were conducted to verify the performance of the proposed technique. Thus, the proposed shape estimation technique can represent the shape according to the deformation of the specimen using the FBGs. Moreover, calculated deflection of the pipeline using the estimation technique showed a good agreement with the actual deflection of the pipeline.

Design of dashboard conceptual model for digital twin based smart pipe health monitoring (디지털 트윈 기반 스마트 파이프 상태 감시를 위한 대시보드 개념모델 설계)

  • Hong, Phil-Doo;Kim, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.389-391
    • /
    • 2022
  • Efforts by the Ministry of Environment and local governments in Korea are continuing to manage the aging of water supply and sewage buried underground. With the support of the Korea Institute of Environmental Industry and Technology's water and sewage innovation technology development project, it is conducting a project to predict and exchange accidents due to aging, and to apply smart functions to new buried pipes. As one of these studies, this paper proposes the design of a dashboard concept model for digital twin-based smart pipe health monitoring, one of the key features of the entire study. Since remote control and monitoring are one of the main functions, distributed transmission and reception agents are deployed to visualize monitoring situations in real time and to increase user affinity by deploying intuitive UI. To validate the design of this proposed special digital twin based smart pipe state monitoring, we construct the conceptual model level and measure the agent effectiveness to validate its excellence.

  • PDF

Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction (터널 및 지중매설물 시공에 따른 지반함몰 발생 원인 및 대책에 대한 지반공학적 조사 연구)

  • Choi, Shin-Kyu;Back, Seung-Hun;An, Jun-Beom;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • This study investigated the occurrences, causes, and mitigation of the recent ground subsidence and underground cavity generation events in Korea. Two main causes of ground subsidence are (1) the soil erosion by seepage during tunneling and earth excavation and (2) the damage of underground pipes. The main cause of the soil erosion during tunneling was the uncontrolled groundwater flow. Especially, when excavating soft grounds using a tunnel boring machine (TBM), the ground near TBM operation halt points were found to be the most vulnerable to failure. The damage of underground pipes was mainly caused by poor construction, material deterioration, and differential settlement in soft soils. The ground subsidence during tunneling and earth excavation can be managed by monitoring the outflow of groundwater and eroded soils in construction sites. It is expected that the ground subsidence by the underground pipe damage can be managed or mitigated by life cycle analysis and maintenance of the buried pipes, and by controlling the earth pressure distribution or increasing the bearing capacity at the upper ground of the buried pipes.

A Study on Applicability of Water Pipe Detecting Using GPR (상수관로 탐사에 대한 지중레이더의 적용가능성에 관한 연구)

  • Lee, Won-Jong;Lim, Sung-Min;Choi, Yun-Soo;Min, Kwan-Sik
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.131-147
    • /
    • 2015
  • In modern society, as to the underground urban infrastructure facilities(communication electricity water and sewage gas etc.) were contained many risks because of excavating. The exact position of underground facilities and the attribute information should be built in order to prevent accidents. As the result of analyzing the public surveying results from 2004 to 2009, it shows that low detecting rate of water pipeline which is only 52.4%, because the exploration of electromagnetic induction only detect metal pipeline and positioning survey only detect new pipeline before burying. Therefore development and verification of the correct and efficient exploration techniques are needed to improve the detecting rate. In this study, determined based on the location measurement results for the non-metal pipes and metal pipes before burial. It was compared with values that obtained through the ground penetrating radar and electromagnetic induction detecting. As a result, detecting rate of the concrete section showed a 100%, unpaved section showed a 94.7%, asphalt section showed 60%. So it confirmed the applicability of the ground penetrating radar at underground facilities detecting.

An Efficient Dynamic Workload Balancing Strategy Design of the Wireless Reading/Management System for the Corrosion Monitoring of Underground Structures (지하 구조물 부식 감시를 위한 무선 검침/관리 시스템 설계)

  • Kwan, Yong-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.95-102
    • /
    • 2014
  • There are a variety of structures below the surface are buried. In particular, if It is experiencing problems in the city gas pipe or electrical wire, our safety would be greatly jeopardized. Therefore, the underground structures which encounter a variety of pollutants are highly sensitive to corrosion. So if you are not identify the degree of corrosion, it can lead to large accidents such as gas leakage. Until now, person visit directly every underground structure to measure and record manually, but This approach requires a lot of human and material resources and the continuity of management. Therefore, the research to find out the risk factors quickly via the continuous management is needed, and in this paper the structures management systems in the vehicle being moved by combining ICT underground structures for state information wirelessly collects and analyzes system is proposed.

A Development Inspection Management Operation Model of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관의 점검 관리 운영 모델 개발)

  • Choi, Ji-Hun;Kim, Jin-Jun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2019
  • The high pressure underground pipelines of industrial states such as Ulsan, Yeosu consist with not only the pipelines for the utility support such as Raw material of petrochemical industry and steam, but also high pressure pipelines of toxic, flammable gas intricately like a web. Therefore, in this study, based on in-depth comparison analysis of industrial estate pipelines, and underground city gas pipelines' safety management status, excavation frequency, excavation depth, patrol period which are pipe damage impact factor by the other construction are analyzed. And, as a result, risk changes and correlations due to risk reduction strategy of the other construction are compared to be presented the safety inspection operation model for the high pressure underground pipelines of industrial estates.