• Title/Summary/Keyword: Underactuated Systems

Search Result 33, Processing Time 0.03 seconds

Adaptive Robust Swing-up and Balancing Control of Acrobot using a Fuzzy Disturbance Observer (퍼지 외란 관측기법을 이용한 아크로봇의 적응형 강인 스윙업 및 밸런싱제어)

  • Jeong, Seongchan;Lee, Sanghyob;Hong, Young-Dae;Chwa, Dongkyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.346-352
    • /
    • 2016
  • This paper proposes an adaptive robust control method for an acrobot system in the presence of input disturbance. The acrobot system is a typical example of the underactuated system with complex nonlinearity and strong dynamic coupling. Also, disturbance can cause limit cycle phenomenon which appears in the acrobot system around the desired unstable equilibrium point. To minimize the effect of the disturbance, we apply a fuzzy disturbance estimation method for the swing-up and balancing control of the acrobot system. In this paper, both disturbance observer and controller for the acrobot system are designed and verified through mathematical proof and simulations.

Backstepping and Partial Asymptotic Stabilization: Applications to Partial Attitude Control

  • Jammazi, Chaker
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.859-872
    • /
    • 2008
  • In this paper, the problem of partial asymptotic stabilization of nonlinear control cascaded systems with integrators is considered. Unfortunately, many controllable control systems present an anomaly, which is the non complete stabilization via continuous pure-state feedback. This is due to Brockett necessary condition. In order to cope with this difficulty we propose in this work the partial asymptotic stabilization. For a given motion of a dynamical system, say x(t,$x_0,t_0$)=(y(t,$y_0,t_0$),z(t,$z_0,t_0$)), the partial stabilization is the qualitative behavior of the y-component of the motion(i.e., the asymptotic stabilization of the motion with respect to y) and the z-component converges, relative to the initial vector x($t_0$)=$x_0$=($y_0,z_0$). In this work we present new results for the adding integrators for partial asymptotic stabilization. Two applications are given to illustrate our theoretical result. The first problem treated is the partial attitude control of the rigid spacecraft with two controls. The second problem treated is the partial orientation of the underactuated ship.

Container Crane Control: Modified Time-Optimal Traveling Followed by Nonlinear Residual Sway Control (컨테이너 기중기의 제어 : 수정된 시간최적주행과 비선형 잔류흔들림 제어)

  • Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.630-639
    • /
    • 1999
  • To achieve fast loading and unloading of containers from a container ship, quick suppression of the remaining sway motion of the container at the end of each trolley stroke is crucial. Due to the pendulum motion of the container and disturbances like sind, residual sway always exists at the end of trolley movement. In this paper, the sway-control problem of a container crane is investigated. A two-stage control is proposed. The first stage is a time optimal controlfor the purpose of fast trolley traveling. The second stage is a nonlinear control for the quick suppression of residual sway, which starts right after the first stage while lowering the container. The nonlinear control is investigated in the perspective of controlling an underatuated mechanical system, which combines partial feedback linearization to account for the known nonlinearities as much as possible, and variable structure control to account for the unmodeled dynamics and disturbances. Simulation and experimental results are provided.

  • PDF

Angular Speed Estimation and Two-Axis Attitude Control of a Spacecraft Using a Variable-Speed Control Moment Gyroscope (가변속 CMG를 장착한 위성의 각속도 추정 및 2축 자세제어)

  • Jin, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1104-1109
    • /
    • 2010
  • This paper deals with the attitude control of an underactuated spacecraft that has fewer than three actuators. Even though such spacecrafts are known as uncontrollable, restricted missions are possible with controlling two-axis attitude angles. A variable speed control moment gyroscope is considered as an actuator. It is a kind of momentum exchange device and it shows highly nonlinear dynamical properties. Speed commands are generated by kinematic equations represented by Euler angles. A control law, that is designed to make a spacecraft follow the speed commands, is derived by the backstepping method. Angular speeds are estimated from the attitude measurements. Several estimation methods have been compared.

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot (차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어)

  • Chung, Woo-Jin;Yoo, Kwang-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

Obstacle Avoidance of Underactuated Robot Manipulators Using Switching Computed Torque Method

  • Keigo, Watanabe;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.2-44
    • /
    • 2001
  • This paper presents a new concept for controlling of under actuated robot manipulators with avoiding obstacles using switching computed torque method (SCTM). One fundamental approach of this algorithm is to use the partly stable controllers (PSCs) in order to fulfill the ultimate control objective. Here, we use genetic algorithms (GA)in order to employ the optimum control action for a given time frame with the available set of elemental controllers, depending on which links/variables are controlled, i.e. the selection of optimum switching sequence of the control actions. The proposed approach models links of the robot using evolving ellipses and then introduces a penalty scheme for the objective function of GA when it detects collisions. An under actuated robot manipulator, which has three detrees-of-freedom is taken into consideration so as to illustrate the design procedure. Simulation results show the e.ectiveness of the proposed method.

  • PDF

Development of Overload Prevention Algorithm for the Crane Safety (크레인 안전을 위한 과부하 방지 알고리즘 개발)

  • Lee, Sang Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.11-19
    • /
    • 2012
  • Crane systems have been widely used for transportation in building sites, ports, nuclear wastehandling operation and so on. As a typical underactuated system, an overhead crane has such merits as high flexibility and less energy consumption. And it's getting more types of cranes, universally applicable algorithms should be developed. That is the design and development of scalable algorithms are required. Developed algorithms can be used for the controller and crane overload protection that meets the requirements of the algorithm are presented. These algorithms force the state to warn the operator and stops the operation of equipment. In this paper, crane overload conditions that can cause damage to alert the operator, and to limit the operation of equipment overload protection algorithm is presented.

Swing Up and Stabilization Control of the Pendubot

  • Yoo, Ki-Jeong;Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.4-71
    • /
    • 2001
  • This paper presents swing up and stabilization control of an underactuated two-link robot called the Pendubot. This device is a two-link planar robot with an actuator at the shoulder, but no actuator at the elbow. The controller swings up first link from its open loop stable equilibrium point to the unstable equilibrium point and then, catches the unactuated second link to balance it there. Two control algorithms are used for this task. Proportional Derivative Control technique is used to design the swing up control. The linear model of Pendubot is obtained by linearizing the nonlinear dynamic equations about the desired equilibrium point and LQR technique is used to design a stabilization controller.

  • PDF

Design and Field Test of Heading and Depth Control Based on PD Control of Torpedo Type AUV, HW200 (PD제어 기법을 적용한 어뢰형 무인잠수정(HW200)의 선수각 및 심도제어기 설계와 실해역 성능 검증)

  • Park, Sung-kook;Lee, Phil-yeop;Park, Sangwoong;Kwon, Soon T.;Jung, Hunsang;Park, Min-su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.951-957
    • /
    • 2015
  • This Paper considers the heading and depth control problem for an underactuated AUV (Autonomous Underwater Vehicle) HW200. The HW200 is a torpedo-type AUV that is developed from Hanwha corporation R&D Center for military operation such as MCM (Mine Counter Measures). The HW200 controls horizontal and vertical motion with two stern plane and two rudder plane. It is well known that fine control of an AUV motion is not easy because of model uncertainties, highly nonlinear and coupled motions. To overcome those kind of uncertainties, a number of control methods have been presented. In this paper, the motion controllers of the HW200 are designed using PD controller design method based on the linear and perturbed model of the typical 6-DOF equations of an AUV, and confirmed the effectiveness of the controller through simulations and field test.