• Title/Summary/Keyword: Under Cover

Search Result 856, Processing Time 0.03 seconds

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

Surface Cover Application for Reduction of Runoff and Sediment Discharge from Sloping Fields (경사지 밭에서 발생하는 토양유실 저감을 위한 피복재 적용)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Shin, Jae-Young;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • To measure effects of surface cover on runoff and sediment discharge reduction using rainfall simulator, four(5 m${\times}$30 m scale) plot experiments were conducted in this study. Surface covers made with straw mat, Polyacrylamide (PAM), chaff, and sawdust were simulated 4 times under 31.1~44.4 mm/hr rainfall intensities. Compared with results from control plot, the time of runoff generation is delayed and outflow volume decreased with surface cover. Effects on runoff reduction of straw mat, PAM, sawdust and chaff ranged 4.7~81.5 % and runoff rate reduced by 6.5~76.1 % respectively, when compared with those from control plot. The percentage of decrease in sediment discharge were 99.7~99.8 % from straw mat+sawdust+PAM plots, 85.9~95.6 % from straw mat+PAM plots, and 98.5~99.4 % from straw mat+chaff+PAM plots. The runoff, sediment discharge, and SS concentration reduction efficiencies of the cover materials were outstanding when compared to control plot. It was analyzed that reduction of runoff and sediment discharge were mainly contributed by decrease in rainfall energy impact and flow velocity and increase of infiltration due to the surface cover materials. The results could be used as a base for the development of best management practices (BMPs) to reduce runoff, sediment discharge from sloping field.

Comparison of Weed Occurrence and Growth of Some Leguminous Plants for Green Manure Cover Crop During Summer Fallow (여름철 휴경조건에서 잡초의 발생과 몇 가지 두과식물의 녹비로서의 이용성에 대한 비교)

  • Lee, Kwang-Hoe
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.169-175
    • /
    • 2007
  • This experiment was carried out to compare weed occurrence and to evaluate the field performance of some leguminous plant species under no-weeding fallow condition during summer months from middle of June to middle of August. In 2005 and 2006, the first dominant weed species was Digitaria sanguinalis, and other major weed species, such as Cyperus amuricus, Portulaca oleracea, and Amaranthus retroflexus, were similar among treatments. In both years, total shoot dry weight of weeds was the highest In the control plot, and the lowest in the cowpea plot, indicating that cowpea most effectively suppressed the growth of weeds among treatments. When the growth of four different leguminous species were compared after seeding during middle of June in 2006, cowpea and rice bean grew vigorously under no-weeding condition during hot and humid summer months, while wild soybean and hairy vetch did not. Shoot dry weight was in the order of cowpea > rice bean > wild soybean > hairy vetch. In conclusion, cowpea is a leguminous species which can be used as a green manure cover crop during summer months under no-weeding and our climate condition. Further works are needed to use cowpea as a green cover crop during summer months for various cropping systems.

Influences of Urban Trees on the Control of the Temperature (도시의 수목이 기온의 조절에 미치는 영향)

  • 김수봉;김해동
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.

Performance of sandwich structure strengthened by pyramid cover under blast effect

  • Mazek, Sherif A.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.471-486
    • /
    • 2014
  • The number of explosive attacks on civilian structures has recently increased. Protection of structure subjected to blast load remains quite sophisticated to predict. The use of the pyramid cover system (PCS) to strengthen sandwich structures against a blast terror has great interests from engineering experts in structural retrofitting. The sandwich steel structure performance under the impact of blast wave effect is highlighted. A 3-D numerical model is proposed to study the PCS layer to strengthen sandwich steel structures using finite element analysis (FEA). Hexagonal core sandwich (XCS) steel panels are used to study structural retrofitting using the PCS layer. Field blast test is conducted. The study presents a comparison between the results obtained by both the field blast test and the FEA to validate the accuracy of the 3-D finite element model. The effects are expressed in terms of displacement-time history of the sandwich steel panels and pressure-time history effect on the sandwich steel panels as the explosive wave propagates. The results obtained by the field blast test have a good agreement with those obtained by the numerical model. The PCS layer improves the sandwich steel panel performance under impact of detonating different TNT explosive charges.

Growth and Ground Coverage of Ophiopogon japonicus 'Nanus' under Different Shade Conditions (차광처리에 따른 애기소엽맥문동의 생장과 피복에 관한 연구)

  • Kang, Ae-Ran;Park, Seok-Gon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.68-75
    • /
    • 2017
  • Demand for dwarf mondo grass (DMG; Ophiopogon japonicus 'Nanus') as an ornamental garden plant is expected to grow in the future. The purpose of this study was to investigate the levels of shade tolerance and ground cover by growing DMG under a variety of shade conditions for 18 months (May 2015~October 2016). DMG plants grown in bare ground for 3 years in Jangheung-gun, Jeonnam were used for testing. In an experimental site created in Naju city in Jeonnam, the DMG was planted in planters ($70cm{\times}70cm{\times}24cm$) and covered with a shading curtain to block natural light. Shaded conditions were then arranged under different levels of shade (0%, 55% and 75%). When the plants were grown, growth (leaf size, the number of leaves, fresh weight and dry weight) and ground coverage of DMG were analyzed. According to the results, DMG growth in terms of leaf size and the number of leaves was statistically higher under zero shade (full sunlight), when compared to other shaded conditions. DMG's fresh and dry weights were significantly greater under 0% and 55% shade, compared to those under 75% shade. The degrees of shade tolerance required for normal growth of DMG were found in the range of 0~50%, meaning that more than 50% shade may decrease plant growth. There were no statistical differences in ground coverage rates of DMG under different levels of shade. When 220 tillers were planted per $1m^2$ of plot, up to 80% of the area was covered by DMG after 18 months. Since DMG requires nutrient-rich soil to grow, sufficient nitrogen fertilizers are proposed to accelerate the ground cover of DMG. As DMG remained alive over the winter in the experiments, this study also suggests that DMG can be planted in the southern temperate region.

Effects of Shading on the Growth of Hedera rhombea Bean and Pachysandra terminalis Sieb. et Zucc. (차광수준이 송악과 수호초의 생육에 미치는 효과)

  • Jeong, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.17 no.1
    • /
    • pp.29-32
    • /
    • 1999
  • This experiment was conducted to investigate the effect of different levels of shading (0, 35, 55, 75, 95% to incident sunlight) on the growth of Hedera rhombea Bean and Pachysandra terminalis Sieb. et Zucc. in order to determine optimum light intensity for ground cover plants. H. rhombea showed a upright growth type under 95% shading and P. terminalis was highest under 35% shading. Number of branches was not significantly affected by shading levels. Stem diameter and length were reduced under shading from 35% to 95%. Leaf growth was vigorous under 35% and 55% shade condition. Leaves became longer with decreasing light intensity, but shorter in 95% shading than control. There was a slight trend that total chlorophyll and chlorophyll a, b contents increased with decreasing light intensity, and so did chlorophyll a/b ratio. Fresh and dry weight of both plants were higher under 35, 55, and 75% shading than control and 95% shading. Specific leaf weight tended to decrease with reduction of light intensity. Thus, optimum light intensity for growth of them may be 35 and 55% shading of incident sunlight. In addition, it is possible to grow them under even 75% shading of incident sunlight.

  • PDF

Effect of Shading Levels on the Soil Properties, Growth Characteristics, and Chlorophyll Contents of Ligularia stenocephala (차광정도가 곤달비의 토양변화, 생육상황 및 엽록소 함량에 미치는 영향)

  • Park, Byoung-Mo;Kim, Chang-Hwan;Bae, Jong-Hyang;Shin, Jung-Ryeul
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • It is true that the industrial development has usually been accompanied with urbanization or centralization of population that has inevitably led to high-rise buildings and densely built-up living area in the cities. While it is badly needed to acquire as much green land within the city limits as possible to compensate for reduced space for recreational purpose in parallel with increasingly urbanized area, the living conditions of plants have become seriously devastated due to shortage of sun light walled-off by high-rise buildings and contaminated environment and air. The shade that is generated by high-rise and compact buildings hinders growth of plants, which makes it urgent to develop native ground cover plant that is strongly viable in the shade. For this purpose, Ligularia stenocephala, best known as greens for Ssam (rice and condiments wrapped in leaves) was cultivated under the 30%, 50%, and 80% shadings and observed to see if there would be any changes in soil conditions, growth of plants and chlorophyll contents depending on the shading rate. The leaf number was 10.8 pieces under the 50% shading and 8.4 under the 30%-shading, 7.7 pieces more than that cultivated under lighting. The leaf width turned out to be excellent from cultivation under the 50%- shading, an evidence indicating its possibility of being cultivated as native ground cover plant in the shade. The live weight of the plants cultivated under the shading increased to 31.63 g, 43.39 g and 19.40 g, respectively, compared to 90.43 g of those in the untreated control plot. The increase in growth of roots was particularly significant with 48.48 g in comparison to 12.33 g under 30% shading cultivation. The chlorophyll synthesis amounted to 46.2 under the 50% shading, showing an increase compared to 41.9 under lighting. The chlorophyll synthesis rather shrank under other shading conditions. The cultivation of Ligularia stenocephala under the 50% shading showed the best condition in growth as native ground cover plant.

Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope (사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • While the study of the shallow tunnel has been mainly on the longitudinal load transfer and horizontal surface conditions, the study of the ground behavior of shallow tunnel under the slope is not sufficient. Therefore, in this study on the ground behavior around a tunnel due to the sidewall deformation of shallow tunnel under the slope that is excavated in longitudinal direction, a scale-down model test has been performed. The model tunnel has the dimension of 320 mm wide, 210 mm high and 55 mm long with enough material strength in aluminum and the model ground has the uniform ground conditions by 3 types of carbon rods. The model test has been performed with the variables of slopes and the cover depths by controlling the tunnel sidewall deformation, and the change of sidewall-load, load transfer, ground subsidence was monitored and analyzed. According to the increase of the slope, the maximum ground subsidence increased by 20~39% compared to the horizontal surface. The load ratio increased by maximum 20% in the tunnel crown and decreased in sidewall according to the surface slope. The load transfer shows maximum 128% of increase at the cover depth of 1.0D, while at the 1.5D cover depth it shows non-critical difference from horizontal surface. The slope has major effects on load transfer at the cover depth of 1.0D.

Analysis of RC Columns under High Temperature (고온에 노출된 철근콘크리트 기둥의 거동 해석)

  • 이지웅;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.625-628
    • /
    • 2003
  • This paper presents the behaviors of reinforced concrete columns under high temperature. When columns are exposed high temperature, temperature distribution of a section becomes nonlinear and it is calculated by using finite difference method(F.D.M). The interaction curves show the strength of columns at various exposure times. The strength of columns decreases according to the increase of the exposure time and the decrease of concrete cover.

  • PDF