• Title/Summary/Keyword: Uncooled

Search Result 88, Processing Time 0.031 seconds

The Design of a Read-Out Circuit for Uncooled Infrared Sensor by Using Differential Input Stage (차동 입력단 구조를 이용한 비냉각형 적외선 센서용 신호 검출회로의 설계)

  • Hong, Seung-Woo;Hwang, Sang-Joon;Park, Sang-Won;Jung, Eun-Sik;Kang, Ey-Goo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.180-182
    • /
    • 2005
  • 비냉각형 적외선 검출 회로 설계 시 공정상 변화에 의해 발생하는 센서의 저항값 변동이 크다. 본 논문에서는 이것을 해결하기 위해 차동적 입력 수신 구조를 이용한 방법을 제시하였다. 볼로미터 타입 비냉각형 적외선 영상 센서 회로는 입사된 적외선 에너지 양에 따라 센서의 저항값이 변하는 특성을 이용하며 그에 따른 전압 또는 전류의 변화를 측정하여 적외선의 파장을 알아내는 방식으로 검출회로 설계 시 가장 큰 문제점인 공정상의 변화 등으로 인한 신호검출 회로의 오동작을 개선하기 위하여 검출회로의 입력단을 차동적으로 받아들이도록 설계하였다.

  • PDF

A Study on the Design of a ROIC for Uncooled Bolometer Thermal Image Sensor using Reference Resistor Compensation (기준저항 보상회로를 이용한 비냉각형 볼로미터 검출회로의 설계에 관한 연구)

  • Yu, Seung-Woo;Kwak, Sang-Hyeon;Jung, Eun-Sik;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.119-122
    • /
    • 2009
  • As infrared light radiates, the CMOS Readout IC (ROIC) for the microbolometer typed infrared sensor detects voltage or current which is caused by the variation of resistance in the bolometer sensor. A serious problem we may have in designing the ROIC is the value of bolometer and reference resistors will be changed due to process variation. Since each pixel does not have the same value of resistance, fixed pattern noise problems happen during the sensor operations. In this paper, we propose a novel technique to compensate the fluctuation of reference resistance with taking account of process variation. By using a comparator and a cross coupled latch, we will make the value of reference resistor same as the bolometer's.

볼로메터용 바나듐-텅스텐 산화물로 표면 미세가공한 비냉각 적외선 감지기의 특성

  • Han Yong-Hui;Kim Geun-Te;Lee Seung-Hun;Sin Hyeon-Jun;Mun Seong-Uk;Choe In-Hun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.124-128
    • /
    • 2005
  • To produce a highly sensitive uncooled microbolometer, the development of a high-performance thermometric material is essential. In this work, amorphous vanadium-tungsten oxide was developed as a thermometric material at a low temperature of $300^{\circ}C$, and the microbolometer, coupled with the material, was designed and fabricated using surface micromachining technology. The vanadium-tungsten oxide showed good properties for application to the microbolometer, Such as a high temperature coefficient of resistance of over -4.0 $\%$/K and good compatibility with the surface micromachining and integrated circuit fabrication process due to its low fabrication temperature. As a result, the uncooled microbolometer could be fabricated with high detectivity over $1.0\;{\times}\;10^9\;cmHz^{1/2}/W$ at a bias current of $7.5\;{\mu}A$ and a chopper frequency of 10-20 Hz

  • PDF

Fabrication and High Temperature Characteristics of 1.3um Uncooled AlGaInAs BH FP Laser Diodes (1.3um 비냉각형 AlGaInAs BH FP-LD 제작 및 고온특성)

  • 김현수;황선령;김준연;강중구;방영철;박성수;이은화;김태진;유준상
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.94-95
    • /
    • 2003
  • 최근 들어 저가용 광통신 소자를 제조하기 위한 방법으로 TEC를 사용하지 않는 비냉각형(uncooled) 레이저에 관한 연구가 활발히 진행되고 있다. 이를 위해 반도체 레이저를 형성하는 화합물 반도체 재료 적인 측면에서는 기존에 널리 사용되는 InGaAsP계 물질에 비해 AlGaInAs계 물질구조는 큰 conduction band offset ($\Delta$Ec=$\Delta$O.72Eg) 등으로 인해 고온에서 전자의 overflow를 억제하고 균일한 hole injection으로 인해 우수한 고온특성과 높은 이득(gain)을 보이는 장점을 지니고 있다. (중략)

  • PDF

$V_2O_5/V/V_2O_5$ based uncooled infrared detector by MEMS technology ($V_2O_5/V/V_2O_5$ 다층박막 및 MEMS기술을 이용한 비냉각형 적외선 감지 소자의 제작)

  • Han, Yong-Hee;Hur, Jae-Sung;Park, In-Hoon;Kim, Kun-Tae;Chi-Anh;Shin, Hyun-Joon;Sung Moon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.131-131
    • /
    • 2003
  • Surface micromachined uncooled IR detector with the optimized VOx bolometric layer was fabricated based on sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$. In order to improve the detectivity of the IR detector, we optimized a few factors in the viewpoint of bolometric material. Vanadium oxide thin film is a promising material for uncooled microbolometers due to its high temperature coefficient of resistance at room temperature. It is, however, very difficult to deposit vanadium oxide thin films having high temperature coefficient of resistance and low resistance because of process limits in microbolometer fabrication. In order to increase the responsivity and decrease noise, we increase TCR of bolometric material and decrease room temperature resistance based on the sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$ by conventional sputter. By oxygen diffusion through low temperature annealing of V$_2$O$_{5}$V/V$_2$O$_{5}$ in oxygen ambient, various mixed phase vanadium oxide was formed and we obtained TCR in range of-1.2 ~-2.6%/$^{\circ}C$ at room temperature resistance of 5~100k$\Omega$.mega$.

  • PDF

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.

Dynamic Calibration Coefficients Estimation with Linear Interpolation for Uncooled TEC-less IRFPA (비냉각형 TEC-less 열상 시스템에 적합한 선형보간 기반 동적 보정 계수 추정 기법)

  • Han, Sang-Hyuck;Kwak, Dong-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.98-102
    • /
    • 2012
  • These days, Uncooled IR Systems are more popular in the area of defense and aerospace than before. Uncooled IR Systems are widely used as core technology for making unmanned systems and detecting enemy objects during the day and night in the distance. Recently, researches on TEC-less IRFPA have been increased to minimize the power consumption and to make a smaller system than before. For this, it needs to find adequate NUC(Non-Uniformity Correction) coefficients as FPA(Focal Plane Array) temperature changes. In this paper, we propose a new NUC coefficient estimating technique, DCCE-LI(Dynamic Calibration Coefficients Estimation with Linear Interpolation), for TEC-less IRFPA. It is based on a linear interpolation method and it can estimate NUC coefficients in real-time. So, by testing and evaluating it with some IR images, we conclude that the quality of IR images using proposed method is better than applying static coefficients.

Implementation of BSCT $320{\times}240$ IR-FPA for Uncooled Thermal Imaging System (비냉각 열 영상 시트템용 BSCT $320{\times}240$ IR-FPA의 구현)

  • Kang, Dae-Seok;Shin, Gyeong-Uk;Park, Jae-U;Yoon, Dong-Han;Song, Seong-Hae;Han, Myeong-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.7-13
    • /
    • 2002
  • BSCT 320${\times}$240 IRFPA detector module is implemented, which is a key component in uncooled thermal imaging systems. The detector module consists of two parts, infrared sensitive pixel array and read-out integrated circuit(ROIC). The BSCT 320${\times}$240 pixels are made by laser scribe process and 10-${\mu}m$ micro-bump to satisfy 50-${\mu}m$ pitch and 95-% fill-factor. The ROIC has been designed to electrically address the pixels sequentailly and to improve signal-to-noise ratio with single transistor amplifier, HPF, tunable LPF and clamp circuit. The fabricated hybrid chip of detector and ROIC has been mounted on the TEC built-in ceramic package for more stable operation and tested for lots of electrical and optical properties. The IRFA sample has shown successful properties and met with good results of fill-factor, detectivity and responsivity.

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.